1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Linq;
|
---|
23 | using HeuristicLab.Common;
|
---|
24 | using HeuristicLab.Core;
|
---|
25 | using HeuristicLab.Data;
|
---|
26 | using HeuristicLab.Encodings.BinaryVectorEncoding;
|
---|
27 | using HeuristicLab.Operators;
|
---|
28 | using HeuristicLab.Optimization;
|
---|
29 | using HeuristicLab.Parameters;
|
---|
30 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
31 |
|
---|
32 | namespace HeuristicLab.Problems.OneMax {
|
---|
33 | /// <summary>
|
---|
34 | /// An operator for analyzing the best solution for a OneMax problem.
|
---|
35 | /// </summary>
|
---|
36 | [Item("BestOneMaxSolutionAnalyzer", "An operator for analyzing the best solution for a OneMax problem.")]
|
---|
37 | [StorableClass]
|
---|
38 | public class BestOneMaxSolutionAnalyzer : SingleSuccessorOperator, IAnalyzer {
|
---|
39 | public LookupParameter<BoolValue> MaximizationParameter {
|
---|
40 | get { return (LookupParameter<BoolValue>)Parameters["Maximization"]; }
|
---|
41 | }
|
---|
42 | public ScopeTreeLookupParameter<BinaryVector> BinaryVectorParameter {
|
---|
43 | get { return (ScopeTreeLookupParameter<BinaryVector>)Parameters["BinaryVector"]; }
|
---|
44 | }
|
---|
45 | public ScopeTreeLookupParameter<DoubleValue> QualityParameter {
|
---|
46 | get { return (ScopeTreeLookupParameter<DoubleValue>)Parameters["Quality"]; }
|
---|
47 | }
|
---|
48 | public LookupParameter<OneMaxSolution> BestSolutionParameter {
|
---|
49 | get { return (LookupParameter<OneMaxSolution>)Parameters["BestSolution"]; }
|
---|
50 | }
|
---|
51 | public ValueLookupParameter<ResultCollection> ResultsParameter {
|
---|
52 | get { return (ValueLookupParameter<ResultCollection>)Parameters["Results"]; }
|
---|
53 | }
|
---|
54 | public LookupParameter<DoubleValue> BestKnownQualityParameter {
|
---|
55 | get { return (LookupParameter<DoubleValue>)Parameters["BestKnownQuality"]; }
|
---|
56 | }
|
---|
57 |
|
---|
58 | [StorableConstructor]
|
---|
59 | protected BestOneMaxSolutionAnalyzer(bool deserializing) : base(deserializing) { }
|
---|
60 | protected BestOneMaxSolutionAnalyzer(BestOneMaxSolutionAnalyzer original, Cloner cloner) : base(original, cloner) { }
|
---|
61 | public BestOneMaxSolutionAnalyzer()
|
---|
62 | : base() {
|
---|
63 | Parameters.Add(new LookupParameter<BoolValue>("Maximization", "True if the problem is a maximization problem."));
|
---|
64 | Parameters.Add(new ScopeTreeLookupParameter<BinaryVector>("BinaryVector", "The Onemax solutions from which the best solution should be visualized."));
|
---|
65 | Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>("Quality", "The qualities of the Onemax solutions which should be visualized."));
|
---|
66 | Parameters.Add(new LookupParameter<OneMaxSolution>("BestSolution", "The best Onemax solution."));
|
---|
67 | Parameters.Add(new ValueLookupParameter<ResultCollection>("Results", "The result collection where the Onemax solution should be stored."));
|
---|
68 | Parameters.Add(new LookupParameter<DoubleValue>("BestKnownQuality", "The quality of the best known solution."));
|
---|
69 | }
|
---|
70 |
|
---|
71 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
72 | return new BestOneMaxSolutionAnalyzer(this, cloner);
|
---|
73 | }
|
---|
74 |
|
---|
75 | public override IOperation Apply() {
|
---|
76 | ItemArray<BinaryVector> binaryVectors = BinaryVectorParameter.ActualValue;
|
---|
77 | ItemArray<DoubleValue> qualities = QualityParameter.ActualValue;
|
---|
78 | ResultCollection results = ResultsParameter.ActualValue;
|
---|
79 | bool max = MaximizationParameter.ActualValue.Value;
|
---|
80 | DoubleValue bestKnownQuality = BestKnownQualityParameter.ActualValue;
|
---|
81 |
|
---|
82 | int i = -1;
|
---|
83 | if (!max)
|
---|
84 | i = qualities.Select((x, index) => new { index, x.Value }).OrderBy(x => x.Value).First().index;
|
---|
85 | else i = qualities.Select((x, index) => new { index, x.Value }).OrderByDescending(x => x.Value).First().index;
|
---|
86 |
|
---|
87 | if (bestKnownQuality == null ||
|
---|
88 | max && qualities[i].Value > bestKnownQuality.Value ||
|
---|
89 | !max && qualities[i].Value < bestKnownQuality.Value) {
|
---|
90 | BestKnownQualityParameter.ActualValue = new DoubleValue(qualities[i].Value);
|
---|
91 | }
|
---|
92 |
|
---|
93 | OneMaxSolution solution = BestSolutionParameter.ActualValue;
|
---|
94 | if (solution == null) {
|
---|
95 | solution = new OneMaxSolution((BinaryVector)binaryVectors[i].Clone(), new DoubleValue(qualities[i].Value));
|
---|
96 | BestSolutionParameter.ActualValue = solution;
|
---|
97 | results.Add(new Result("Best OneMax Solution", solution));
|
---|
98 | } else {
|
---|
99 | if (max && qualities[i].Value > solution.Quality.Value ||
|
---|
100 | !max && qualities[i].Value < solution.Quality.Value) {
|
---|
101 | solution.BinaryVector = (BinaryVector)binaryVectors[i].Clone();
|
---|
102 | solution.Quality = new DoubleValue(qualities[i].Value);
|
---|
103 | }
|
---|
104 | }
|
---|
105 |
|
---|
106 | return base.Apply();
|
---|
107 | }
|
---|
108 | }
|
---|
109 | }
|
---|