Free cookie consent management tool by TermsFeed Policy Generator

source: branches/ParameterBinding/HeuristicLab.ExtLibs/HeuristicLab.ALGLIB/2.5.0/ALGLIB-2.5.0/sdet.cs @ 10573

Last change on this file since 10573 was 4068, checked in by swagner, 14 years ago

Sorted usings and removed unused usings in entire solution (#1094)

File size: 4.8 KB
Line 
1/*************************************************************************
2Copyright (c) 2005-2007, Sergey Bochkanov (ALGLIB project).
3
4>>> SOURCE LICENSE >>>
5This program is free software; you can redistribute it and/or modify
6it under the terms of the GNU General Public License as published by
7the Free Software Foundation (www.fsf.org); either version 2 of the
8License, or (at your option) any later version.
9
10This program is distributed in the hope that it will be useful,
11but WITHOUT ANY WARRANTY; without even the implied warranty of
12MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13GNU General Public License for more details.
14
15A copy of the GNU General Public License is available at
16http://www.fsf.org/licensing/licenses
17
18>>> END OF LICENSE >>>
19*************************************************************************/
20
21
22namespace alglib {
23  public class sdet {
24    /*************************************************************************
25    Determinant calculation of the matrix given by LDLT decomposition.
26
27    Input parameters:
28        A       -   LDLT-decomposition of the matrix,
29                    output of subroutine SMatrixLDLT.
30        Pivots  -   table of permutations which were made during
31                    LDLT decomposition, output of subroutine SMatrixLDLT.
32        N       -   size of matrix A.
33        IsUpper -   matrix storage format. The value is equal to the input
34                    parameter of subroutine SMatrixLDLT.
35
36    Result:
37        matrix determinant.
38
39      -- ALGLIB --
40         Copyright 2005-2008 by Bochkanov Sergey
41    *************************************************************************/
42    public static double smatrixldltdet(ref double[,] a,
43        ref int[] pivots,
44        int n,
45        bool isupper) {
46      double result = 0;
47      int k = 0;
48
49      result = 1;
50      if (isupper) {
51        k = 0;
52        while (k < n) {
53          if (pivots[k] >= 0) {
54            result = result * a[k, k];
55            k = k + 1;
56          } else {
57            result = result * (a[k, k] * a[k + 1, k + 1] - a[k, k + 1] * a[k, k + 1]);
58            k = k + 2;
59          }
60        }
61      } else {
62        k = n - 1;
63        while (k >= 0) {
64          if (pivots[k] >= 0) {
65            result = result * a[k, k];
66            k = k - 1;
67          } else {
68            result = result * (a[k - 1, k - 1] * a[k, k] - a[k, k - 1] * a[k, k - 1]);
69            k = k - 2;
70          }
71        }
72      }
73      return result;
74    }
75
76
77    /*************************************************************************
78    Determinant calculation of the symmetric matrix
79
80    Input parameters:
81        A       -   matrix. Array with elements [0..N-1, 0..N-1].
82        N       -   size of matrix A.
83        IsUpper -   if IsUpper = True, then symmetric matrix A is given by its
84                    upper triangle, and the lower triangle isn’t used by
85                    subroutine. Similarly, if IsUpper = False, then A is given
86                    by its lower triangle.
87
88    Result:
89        determinant of matrix A.
90
91      -- ALGLIB --
92         Copyright 2005-2008 by Bochkanov Sergey
93    *************************************************************************/
94    public static double smatrixdet(double[,] a,
95        int n,
96        bool isupper) {
97      double result = 0;
98      int[] pivots = new int[0];
99
100      a = (double[,])a.Clone();
101
102      ldlt.smatrixldlt(ref a, n, isupper, ref pivots);
103      result = smatrixldltdet(ref a, ref pivots, n, isupper);
104      return result;
105    }
106
107
108    public static double determinantldlt(ref double[,] a,
109        ref int[] pivots,
110        int n,
111        bool isupper) {
112      double result = 0;
113      int k = 0;
114
115      result = 1;
116      if (isupper) {
117        k = 1;
118        while (k <= n) {
119          if (pivots[k] > 0) {
120            result = result * a[k, k];
121            k = k + 1;
122          } else {
123            result = result * (a[k, k] * a[k + 1, k + 1] - a[k, k + 1] * a[k, k + 1]);
124            k = k + 2;
125          }
126        }
127      } else {
128        k = n;
129        while (k >= 1) {
130          if (pivots[k] > 0) {
131            result = result * a[k, k];
132            k = k - 1;
133          } else {
134            result = result * (a[k - 1, k - 1] * a[k, k] - a[k, k - 1] * a[k, k - 1]);
135            k = k - 2;
136          }
137        }
138      }
139      return result;
140    }
141
142
143    public static double determinantsymmetric(double[,] a,
144        int n,
145        bool isupper) {
146      double result = 0;
147      int[] pivots = new int[0];
148
149      a = (double[,])a.Clone();
150
151      ldlt.ldltdecomposition(ref a, n, isupper, ref pivots);
152      result = determinantldlt(ref a, ref pivots, n, isupper);
153      return result;
154    }
155  }
156}
Note: See TracBrowser for help on using the repository browser.