1 | /*************************************************************************
|
---|
2 | Copyright (c) 1992-2007 The University of Tennessee. All rights reserved.
|
---|
3 |
|
---|
4 | Contributors:
|
---|
5 | * Sergey Bochkanov (ALGLIB project). Translation from FORTRAN to
|
---|
6 | pseudocode.
|
---|
7 |
|
---|
8 | See subroutines comments for additional copyrights.
|
---|
9 |
|
---|
10 | >>> SOURCE LICENSE >>>
|
---|
11 | This program is free software; you can redistribute it and/or modify
|
---|
12 | it under the terms of the GNU General Public License as published by
|
---|
13 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
14 | License, or (at your option) any later version.
|
---|
15 |
|
---|
16 | This program is distributed in the hope that it will be useful,
|
---|
17 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
18 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
19 | GNU General Public License for more details.
|
---|
20 |
|
---|
21 | A copy of the GNU General Public License is available at
|
---|
22 | http://www.fsf.org/licensing/licenses
|
---|
23 |
|
---|
24 | >>> END OF LICENSE >>>
|
---|
25 | *************************************************************************/
|
---|
26 |
|
---|
27 |
|
---|
28 | namespace alglib {
|
---|
29 | public class matinv {
|
---|
30 | public struct matinvreport {
|
---|
31 | public double r1;
|
---|
32 | public double rinf;
|
---|
33 | };
|
---|
34 |
|
---|
35 |
|
---|
36 |
|
---|
37 |
|
---|
38 | /*************************************************************************
|
---|
39 | Inversion of a matrix given by its LU decomposition.
|
---|
40 |
|
---|
41 | INPUT PARAMETERS:
|
---|
42 | A - LU decomposition of the matrix (output of RMatrixLU subroutine).
|
---|
43 | Pivots - table of permutations which were made during the LU decomposition
|
---|
44 | (the output of RMatrixLU subroutine).
|
---|
45 | N - size of matrix A.
|
---|
46 |
|
---|
47 | OUTPUT PARAMETERS:
|
---|
48 | Info - return code:
|
---|
49 | * -3 A is singular, or VERY close to singular.
|
---|
50 | it is filled by zeros in such cases.
|
---|
51 | * -1 N<=0 was passed, or incorrect Pivots was passed
|
---|
52 | * 1 task is solved (but matrix A may be ill-conditioned,
|
---|
53 | check R1/RInf parameters for condition numbers).
|
---|
54 | Rep - solver report, see below for more info
|
---|
55 | A - inverse of matrix A.
|
---|
56 | Array whose indexes range within [0..N-1, 0..N-1].
|
---|
57 |
|
---|
58 | SOLVER REPORT
|
---|
59 |
|
---|
60 | Subroutine sets following fields of the Rep structure:
|
---|
61 | * R1 reciprocal of condition number: 1/cond(A), 1-norm.
|
---|
62 | * RInf reciprocal of condition number: 1/cond(A), inf-norm.
|
---|
63 |
|
---|
64 | -- ALGLIB routine --
|
---|
65 | 05.02.2010
|
---|
66 | Bochkanov Sergey
|
---|
67 | *************************************************************************/
|
---|
68 | public static void rmatrixluinverse(ref double[,] a,
|
---|
69 | ref int[] pivots,
|
---|
70 | int n,
|
---|
71 | ref int info,
|
---|
72 | ref matinvreport rep) {
|
---|
73 | double[] work = new double[0];
|
---|
74 | int i = 0;
|
---|
75 | int j = 0;
|
---|
76 | int k = 0;
|
---|
77 | double v = 0;
|
---|
78 |
|
---|
79 | info = 1;
|
---|
80 |
|
---|
81 | //
|
---|
82 | // Quick return if possible
|
---|
83 | //
|
---|
84 | if (n == 0) {
|
---|
85 | info = -1;
|
---|
86 | return;
|
---|
87 | }
|
---|
88 | for (i = 0; i <= n - 1; i++) {
|
---|
89 | if (pivots[i] > n - 1 | pivots[i] < i) {
|
---|
90 | info = -1;
|
---|
91 | return;
|
---|
92 | }
|
---|
93 | }
|
---|
94 |
|
---|
95 | //
|
---|
96 | // calculate condition numbers
|
---|
97 | //
|
---|
98 | rep.r1 = rcond.rmatrixlurcond1(ref a, n);
|
---|
99 | rep.rinf = rcond.rmatrixlurcondinf(ref a, n);
|
---|
100 | if ((double)(rep.r1) < (double)(rcond.rcondthreshold()) | (double)(rep.rinf) < (double)(rcond.rcondthreshold())) {
|
---|
101 | for (i = 0; i <= n - 1; i++) {
|
---|
102 | for (j = 0; j <= n - 1; j++) {
|
---|
103 | a[i, j] = 0;
|
---|
104 | }
|
---|
105 | }
|
---|
106 | rep.r1 = 0;
|
---|
107 | rep.rinf = 0;
|
---|
108 | info = -3;
|
---|
109 | return;
|
---|
110 | }
|
---|
111 |
|
---|
112 | //
|
---|
113 | // Call cache-oblivious code
|
---|
114 | //
|
---|
115 | work = new double[n];
|
---|
116 | rmatrixluinverserec(ref a, 0, n, ref work, ref info, ref rep);
|
---|
117 |
|
---|
118 | //
|
---|
119 | // apply permutations
|
---|
120 | //
|
---|
121 | for (i = 0; i <= n - 1; i++) {
|
---|
122 | for (j = n - 2; j >= 0; j--) {
|
---|
123 | k = pivots[j];
|
---|
124 | v = a[i, j];
|
---|
125 | a[i, j] = a[i, k];
|
---|
126 | a[i, k] = v;
|
---|
127 | }
|
---|
128 | }
|
---|
129 | }
|
---|
130 |
|
---|
131 |
|
---|
132 | /*************************************************************************
|
---|
133 | Inversion of a general matrix.
|
---|
134 |
|
---|
135 | Input parameters:
|
---|
136 | A - matrix. Array whose indexes range within [0..N-1, 0..N-1].
|
---|
137 | N - size of matrix A.
|
---|
138 |
|
---|
139 | Output parameters:
|
---|
140 | Info - return code, same as in RMatrixLUInverse
|
---|
141 | Rep - solver report, same as in RMatrixLUInverse
|
---|
142 | A - inverse of matrix A, same as in RMatrixLUInverse
|
---|
143 |
|
---|
144 | Result:
|
---|
145 | True, if the matrix is not singular.
|
---|
146 | False, if the matrix is singular.
|
---|
147 |
|
---|
148 | -- ALGLIB --
|
---|
149 | Copyright 2005 by Bochkanov Sergey
|
---|
150 | *************************************************************************/
|
---|
151 | public static void rmatrixinverse(ref double[,] a,
|
---|
152 | int n,
|
---|
153 | ref int info,
|
---|
154 | ref matinvreport rep) {
|
---|
155 | int[] pivots = new int[0];
|
---|
156 |
|
---|
157 | trfac.rmatrixlu(ref a, n, n, ref pivots);
|
---|
158 | rmatrixluinverse(ref a, ref pivots, n, ref info, ref rep);
|
---|
159 | }
|
---|
160 |
|
---|
161 |
|
---|
162 | /*************************************************************************
|
---|
163 | Inversion of a matrix given by its LU decomposition.
|
---|
164 |
|
---|
165 | INPUT PARAMETERS:
|
---|
166 | A - LU decomposition of the matrix (output of CMatrixLU subroutine).
|
---|
167 | Pivots - table of permutations which were made during the LU decomposition
|
---|
168 | (the output of CMatrixLU subroutine).
|
---|
169 | N - size of matrix A.
|
---|
170 |
|
---|
171 | OUTPUT PARAMETERS:
|
---|
172 | Info - return code, same as in RMatrixLUInverse
|
---|
173 | Rep - solver report, same as in RMatrixLUInverse
|
---|
174 | A - inverse of matrix A, same as in RMatrixLUInverse
|
---|
175 |
|
---|
176 | -- ALGLIB routine --
|
---|
177 | 05.02.2010
|
---|
178 | Bochkanov Sergey
|
---|
179 | *************************************************************************/
|
---|
180 | public static void cmatrixluinverse(ref AP.Complex[,] a,
|
---|
181 | ref int[] pivots,
|
---|
182 | int n,
|
---|
183 | ref int info,
|
---|
184 | ref matinvreport rep) {
|
---|
185 | AP.Complex[] work = new AP.Complex[0];
|
---|
186 | int i = 0;
|
---|
187 | int j = 0;
|
---|
188 | int k = 0;
|
---|
189 | AP.Complex v = 0;
|
---|
190 |
|
---|
191 | info = 1;
|
---|
192 |
|
---|
193 | //
|
---|
194 | // Quick return if possible
|
---|
195 | //
|
---|
196 | if (n == 0) {
|
---|
197 | info = -1;
|
---|
198 | return;
|
---|
199 | }
|
---|
200 | for (i = 0; i <= n - 1; i++) {
|
---|
201 | if (pivots[i] > n - 1 | pivots[i] < i) {
|
---|
202 | info = -1;
|
---|
203 | return;
|
---|
204 | }
|
---|
205 | }
|
---|
206 |
|
---|
207 | //
|
---|
208 | // calculate condition numbers
|
---|
209 | //
|
---|
210 | rep.r1 = rcond.cmatrixlurcond1(ref a, n);
|
---|
211 | rep.rinf = rcond.cmatrixlurcondinf(ref a, n);
|
---|
212 | if ((double)(rep.r1) < (double)(rcond.rcondthreshold()) | (double)(rep.rinf) < (double)(rcond.rcondthreshold())) {
|
---|
213 | for (i = 0; i <= n - 1; i++) {
|
---|
214 | for (j = 0; j <= n - 1; j++) {
|
---|
215 | a[i, j] = 0;
|
---|
216 | }
|
---|
217 | }
|
---|
218 | rep.r1 = 0;
|
---|
219 | rep.rinf = 0;
|
---|
220 | info = -3;
|
---|
221 | return;
|
---|
222 | }
|
---|
223 |
|
---|
224 | //
|
---|
225 | // Call cache-oblivious code
|
---|
226 | //
|
---|
227 | work = new AP.Complex[n];
|
---|
228 | cmatrixluinverserec(ref a, 0, n, ref work, ref info, ref rep);
|
---|
229 |
|
---|
230 | //
|
---|
231 | // apply permutations
|
---|
232 | //
|
---|
233 | for (i = 0; i <= n - 1; i++) {
|
---|
234 | for (j = n - 2; j >= 0; j--) {
|
---|
235 | k = pivots[j];
|
---|
236 | v = a[i, j];
|
---|
237 | a[i, j] = a[i, k];
|
---|
238 | a[i, k] = v;
|
---|
239 | }
|
---|
240 | }
|
---|
241 | }
|
---|
242 |
|
---|
243 |
|
---|
244 | /*************************************************************************
|
---|
245 | Inversion of a general matrix.
|
---|
246 |
|
---|
247 | Input parameters:
|
---|
248 | A - matrix, array[0..N-1,0..N-1].
|
---|
249 | N - size of A.
|
---|
250 |
|
---|
251 | Output parameters:
|
---|
252 | Info - return code, same as in RMatrixLUInverse
|
---|
253 | Rep - solver report, same as in RMatrixLUInverse
|
---|
254 | A - inverse of matrix A, same as in RMatrixLUInverse
|
---|
255 |
|
---|
256 | -- ALGLIB --
|
---|
257 | Copyright 2005 by Bochkanov Sergey
|
---|
258 | *************************************************************************/
|
---|
259 | public static void cmatrixinverse(ref AP.Complex[,] a,
|
---|
260 | int n,
|
---|
261 | ref int info,
|
---|
262 | ref matinvreport rep) {
|
---|
263 | int[] pivots = new int[0];
|
---|
264 |
|
---|
265 | trfac.cmatrixlu(ref a, n, n, ref pivots);
|
---|
266 | cmatrixluinverse(ref a, ref pivots, n, ref info, ref rep);
|
---|
267 | }
|
---|
268 |
|
---|
269 |
|
---|
270 | /*************************************************************************
|
---|
271 | Inversion of a symmetric positive definite matrix which is given
|
---|
272 | by Cholesky decomposition.
|
---|
273 |
|
---|
274 | Input parameters:
|
---|
275 | A - Cholesky decomposition of the matrix to be inverted:
|
---|
276 | A=U*U or A = L*L'.
|
---|
277 | Output of SPDMatrixCholesky subroutine.
|
---|
278 | N - size of matrix A.
|
---|
279 | IsUpper storage format.
|
---|
280 | If IsUpper = True, then matrix A is given as A = U'*U
|
---|
281 | (matrix contains upper triangle).
|
---|
282 | Similarly, if IsUpper = False, then A = L*L'.
|
---|
283 |
|
---|
284 | Output parameters:
|
---|
285 | Info - return code, same as in RMatrixLUInverse
|
---|
286 | Rep - solver report, same as in RMatrixLUInverse
|
---|
287 | A - inverse of matrix A, same as in RMatrixLUInverse
|
---|
288 |
|
---|
289 | -- ALGLIB routine --
|
---|
290 | 10.02.2010
|
---|
291 | Bochkanov Sergey
|
---|
292 | *************************************************************************/
|
---|
293 | public static void spdmatrixcholeskyinverse(ref double[,] a,
|
---|
294 | int n,
|
---|
295 | bool isupper,
|
---|
296 | ref int info,
|
---|
297 | ref matinvreport rep) {
|
---|
298 | int i = 0;
|
---|
299 | int j = 0;
|
---|
300 | int k = 0;
|
---|
301 | double v = 0;
|
---|
302 | double ajj = 0;
|
---|
303 | double aii = 0;
|
---|
304 | double[] tmp = new double[0];
|
---|
305 | int info2 = 0;
|
---|
306 | matinvreport rep2 = new matinvreport();
|
---|
307 |
|
---|
308 | if (n < 1) {
|
---|
309 | info = -1;
|
---|
310 | return;
|
---|
311 | }
|
---|
312 | info = 1;
|
---|
313 |
|
---|
314 | //
|
---|
315 | // calculate condition numbers
|
---|
316 | //
|
---|
317 | rep.r1 = rcond.spdmatrixcholeskyrcond(ref a, n, isupper);
|
---|
318 | rep.rinf = rep.r1;
|
---|
319 | if ((double)(rep.r1) < (double)(rcond.rcondthreshold()) | (double)(rep.rinf) < (double)(rcond.rcondthreshold())) {
|
---|
320 | if (isupper) {
|
---|
321 | for (i = 0; i <= n - 1; i++) {
|
---|
322 | for (j = i; j <= n - 1; j++) {
|
---|
323 | a[i, j] = 0;
|
---|
324 | }
|
---|
325 | }
|
---|
326 | } else {
|
---|
327 | for (i = 0; i <= n - 1; i++) {
|
---|
328 | for (j = 0; j <= i; j++) {
|
---|
329 | a[i, j] = 0;
|
---|
330 | }
|
---|
331 | }
|
---|
332 | }
|
---|
333 | rep.r1 = 0;
|
---|
334 | rep.rinf = 0;
|
---|
335 | info = -3;
|
---|
336 | return;
|
---|
337 | }
|
---|
338 |
|
---|
339 | //
|
---|
340 | // Inverse
|
---|
341 | //
|
---|
342 | tmp = new double[n];
|
---|
343 | spdmatrixcholeskyinverserec(ref a, 0, n, isupper, ref tmp);
|
---|
344 | }
|
---|
345 |
|
---|
346 |
|
---|
347 | /*************************************************************************
|
---|
348 | Inversion of a symmetric positive definite matrix.
|
---|
349 |
|
---|
350 | Given an upper or lower triangle of a symmetric positive definite matrix,
|
---|
351 | the algorithm generates matrix A^-1 and saves the upper or lower triangle
|
---|
352 | depending on the input.
|
---|
353 |
|
---|
354 | Input parameters:
|
---|
355 | A - matrix to be inverted (upper or lower triangle).
|
---|
356 | Array with elements [0..N-1,0..N-1].
|
---|
357 | N - size of matrix A.
|
---|
358 | IsUpper - storage format.
|
---|
359 | If IsUpper = True, then the upper triangle of matrix A is
|
---|
360 | given, otherwise the lower triangle is given.
|
---|
361 |
|
---|
362 | Output parameters:
|
---|
363 | Info - return code, same as in RMatrixLUInverse
|
---|
364 | Rep - solver report, same as in RMatrixLUInverse
|
---|
365 | A - inverse of matrix A, same as in RMatrixLUInverse
|
---|
366 |
|
---|
367 | -- ALGLIB routine --
|
---|
368 | 10.02.2010
|
---|
369 | Bochkanov Sergey
|
---|
370 | *************************************************************************/
|
---|
371 | public static void spdmatrixinverse(ref double[,] a,
|
---|
372 | int n,
|
---|
373 | bool isupper,
|
---|
374 | ref int info,
|
---|
375 | ref matinvreport rep) {
|
---|
376 | if (n < 1) {
|
---|
377 | info = -1;
|
---|
378 | return;
|
---|
379 | }
|
---|
380 | info = 1;
|
---|
381 | if (trfac.spdmatrixcholesky(ref a, n, isupper)) {
|
---|
382 | spdmatrixcholeskyinverse(ref a, n, isupper, ref info, ref rep);
|
---|
383 | } else {
|
---|
384 | info = -3;
|
---|
385 | }
|
---|
386 | }
|
---|
387 |
|
---|
388 |
|
---|
389 | /*************************************************************************
|
---|
390 | Inversion of a Hermitian positive definite matrix which is given
|
---|
391 | by Cholesky decomposition.
|
---|
392 |
|
---|
393 | Input parameters:
|
---|
394 | A - Cholesky decomposition of the matrix to be inverted:
|
---|
395 | A=U*U or A = L*L'.
|
---|
396 | Output of HPDMatrixCholesky subroutine.
|
---|
397 | N - size of matrix A.
|
---|
398 | IsUpper storage format.
|
---|
399 | If IsUpper = True, then matrix A is given as A = U'*U
|
---|
400 | (matrix contains upper triangle).
|
---|
401 | Similarly, if IsUpper = False, then A = L*L'.
|
---|
402 |
|
---|
403 | Output parameters:
|
---|
404 | Info - return code, same as in RMatrixLUInverse
|
---|
405 | Rep - solver report, same as in RMatrixLUInverse
|
---|
406 | A - inverse of matrix A, same as in RMatrixLUInverse
|
---|
407 |
|
---|
408 | -- ALGLIB routine --
|
---|
409 | 10.02.2010
|
---|
410 | Bochkanov Sergey
|
---|
411 | *************************************************************************/
|
---|
412 | public static void hpdmatrixcholeskyinverse(ref AP.Complex[,] a,
|
---|
413 | int n,
|
---|
414 | bool isupper,
|
---|
415 | ref int info,
|
---|
416 | ref matinvreport rep) {
|
---|
417 | int i = 0;
|
---|
418 | int j = 0;
|
---|
419 | int info2 = 0;
|
---|
420 | matinvreport rep2 = new matinvreport();
|
---|
421 | AP.Complex[] tmp = new AP.Complex[0];
|
---|
422 | AP.Complex v = 0;
|
---|
423 |
|
---|
424 | if (n < 1) {
|
---|
425 | info = -1;
|
---|
426 | return;
|
---|
427 | }
|
---|
428 | info = 1;
|
---|
429 |
|
---|
430 | //
|
---|
431 | // calculate condition numbers
|
---|
432 | //
|
---|
433 | rep.r1 = rcond.hpdmatrixcholeskyrcond(ref a, n, isupper);
|
---|
434 | rep.rinf = rep.r1;
|
---|
435 | if ((double)(rep.r1) < (double)(rcond.rcondthreshold()) | (double)(rep.rinf) < (double)(rcond.rcondthreshold())) {
|
---|
436 | if (isupper) {
|
---|
437 | for (i = 0; i <= n - 1; i++) {
|
---|
438 | for (j = i; j <= n - 1; j++) {
|
---|
439 | a[i, j] = 0;
|
---|
440 | }
|
---|
441 | }
|
---|
442 | } else {
|
---|
443 | for (i = 0; i <= n - 1; i++) {
|
---|
444 | for (j = 0; j <= i; j++) {
|
---|
445 | a[i, j] = 0;
|
---|
446 | }
|
---|
447 | }
|
---|
448 | }
|
---|
449 | rep.r1 = 0;
|
---|
450 | rep.rinf = 0;
|
---|
451 | info = -3;
|
---|
452 | return;
|
---|
453 | }
|
---|
454 |
|
---|
455 | //
|
---|
456 | // Inverse
|
---|
457 | //
|
---|
458 | tmp = new AP.Complex[n];
|
---|
459 | hpdmatrixcholeskyinverserec(ref a, 0, n, isupper, ref tmp);
|
---|
460 | }
|
---|
461 |
|
---|
462 |
|
---|
463 | /*************************************************************************
|
---|
464 | Inversion of a Hermitian positive definite matrix.
|
---|
465 |
|
---|
466 | Given an upper or lower triangle of a Hermitian positive definite matrix,
|
---|
467 | the algorithm generates matrix A^-1 and saves the upper or lower triangle
|
---|
468 | depending on the input.
|
---|
469 |
|
---|
470 | Input parameters:
|
---|
471 | A - matrix to be inverted (upper or lower triangle).
|
---|
472 | Array with elements [0..N-1,0..N-1].
|
---|
473 | N - size of matrix A.
|
---|
474 | IsUpper - storage format.
|
---|
475 | If IsUpper = True, then the upper triangle of matrix A is
|
---|
476 | given, otherwise the lower triangle is given.
|
---|
477 |
|
---|
478 | Output parameters:
|
---|
479 | Info - return code, same as in RMatrixLUInverse
|
---|
480 | Rep - solver report, same as in RMatrixLUInverse
|
---|
481 | A - inverse of matrix A, same as in RMatrixLUInverse
|
---|
482 |
|
---|
483 | -- ALGLIB routine --
|
---|
484 | 10.02.2010
|
---|
485 | Bochkanov Sergey
|
---|
486 | *************************************************************************/
|
---|
487 | public static void hpdmatrixinverse(ref AP.Complex[,] a,
|
---|
488 | int n,
|
---|
489 | bool isupper,
|
---|
490 | ref int info,
|
---|
491 | ref matinvreport rep) {
|
---|
492 | if (n < 1) {
|
---|
493 | info = -1;
|
---|
494 | return;
|
---|
495 | }
|
---|
496 | info = 1;
|
---|
497 | if (trfac.hpdmatrixcholesky(ref a, n, isupper)) {
|
---|
498 | hpdmatrixcholeskyinverse(ref a, n, isupper, ref info, ref rep);
|
---|
499 | } else {
|
---|
500 | info = -3;
|
---|
501 | }
|
---|
502 | }
|
---|
503 |
|
---|
504 |
|
---|
505 | /*************************************************************************
|
---|
506 | Triangular matrix inverse (real)
|
---|
507 |
|
---|
508 | The subroutine inverts the following types of matrices:
|
---|
509 | * upper triangular
|
---|
510 | * upper triangular with unit diagonal
|
---|
511 | * lower triangular
|
---|
512 | * lower triangular with unit diagonal
|
---|
513 |
|
---|
514 | In case of an upper (lower) triangular matrix, the inverse matrix will
|
---|
515 | also be upper (lower) triangular, and after the end of the algorithm, the
|
---|
516 | inverse matrix replaces the source matrix. The elements below (above) the
|
---|
517 | main diagonal are not changed by the algorithm.
|
---|
518 |
|
---|
519 | If the matrix has a unit diagonal, the inverse matrix also has a unit
|
---|
520 | diagonal, and the diagonal elements are not passed to the algorithm.
|
---|
521 |
|
---|
522 | Input parameters:
|
---|
523 | A - matrix, array[0..N-1, 0..N-1].
|
---|
524 | N - size of A.
|
---|
525 | IsUpper - True, if the matrix is upper triangular.
|
---|
526 | IsUnit - True, if the matrix has a unit diagonal.
|
---|
527 |
|
---|
528 | Output parameters:
|
---|
529 | Info - same as for RMatrixLUInverse
|
---|
530 | Rep - same as for RMatrixLUInverse
|
---|
531 | A - same as for RMatrixLUInverse.
|
---|
532 |
|
---|
533 | -- ALGLIB --
|
---|
534 | Copyright 05.02.2010 by Bochkanov Sergey
|
---|
535 | *************************************************************************/
|
---|
536 | public static void rmatrixtrinverse(ref double[,] a,
|
---|
537 | int n,
|
---|
538 | bool isupper,
|
---|
539 | bool isunit,
|
---|
540 | ref int info,
|
---|
541 | ref matinvreport rep) {
|
---|
542 | int i = 0;
|
---|
543 | int j = 0;
|
---|
544 | double[] tmp = new double[0];
|
---|
545 |
|
---|
546 | if (n < 1) {
|
---|
547 | info = -1;
|
---|
548 | return;
|
---|
549 | }
|
---|
550 | info = 1;
|
---|
551 |
|
---|
552 | //
|
---|
553 | // calculate condition numbers
|
---|
554 | //
|
---|
555 | rep.r1 = rcond.rmatrixtrrcond1(ref a, n, isupper, isunit);
|
---|
556 | rep.rinf = rcond.rmatrixtrrcondinf(ref a, n, isupper, isunit);
|
---|
557 | if ((double)(rep.r1) < (double)(rcond.rcondthreshold()) | (double)(rep.rinf) < (double)(rcond.rcondthreshold())) {
|
---|
558 | for (i = 0; i <= n - 1; i++) {
|
---|
559 | for (j = 0; j <= n - 1; j++) {
|
---|
560 | a[i, j] = 0;
|
---|
561 | }
|
---|
562 | }
|
---|
563 | rep.r1 = 0;
|
---|
564 | rep.rinf = 0;
|
---|
565 | info = -3;
|
---|
566 | return;
|
---|
567 | }
|
---|
568 |
|
---|
569 | //
|
---|
570 | // Invert
|
---|
571 | //
|
---|
572 | tmp = new double[n];
|
---|
573 | rmatrixtrinverserec(ref a, 0, n, isupper, isunit, ref tmp, ref info, ref rep);
|
---|
574 | }
|
---|
575 |
|
---|
576 |
|
---|
577 | /*************************************************************************
|
---|
578 | Triangular matrix inverse (complex)
|
---|
579 |
|
---|
580 | The subroutine inverts the following types of matrices:
|
---|
581 | * upper triangular
|
---|
582 | * upper triangular with unit diagonal
|
---|
583 | * lower triangular
|
---|
584 | * lower triangular with unit diagonal
|
---|
585 |
|
---|
586 | In case of an upper (lower) triangular matrix, the inverse matrix will
|
---|
587 | also be upper (lower) triangular, and after the end of the algorithm, the
|
---|
588 | inverse matrix replaces the source matrix. The elements below (above) the
|
---|
589 | main diagonal are not changed by the algorithm.
|
---|
590 |
|
---|
591 | If the matrix has a unit diagonal, the inverse matrix also has a unit
|
---|
592 | diagonal, and the diagonal elements are not passed to the algorithm.
|
---|
593 |
|
---|
594 | Input parameters:
|
---|
595 | A - matrix, array[0..N-1, 0..N-1].
|
---|
596 | N - size of A.
|
---|
597 | IsUpper - True, if the matrix is upper triangular.
|
---|
598 | IsUnit - True, if the matrix has a unit diagonal.
|
---|
599 |
|
---|
600 | Output parameters:
|
---|
601 | Info - same as for RMatrixLUInverse
|
---|
602 | Rep - same as for RMatrixLUInverse
|
---|
603 | A - same as for RMatrixLUInverse.
|
---|
604 |
|
---|
605 | -- ALGLIB --
|
---|
606 | Copyright 05.02.2010 by Bochkanov Sergey
|
---|
607 | *************************************************************************/
|
---|
608 | public static void cmatrixtrinverse(ref AP.Complex[,] a,
|
---|
609 | int n,
|
---|
610 | bool isupper,
|
---|
611 | bool isunit,
|
---|
612 | ref int info,
|
---|
613 | ref matinvreport rep) {
|
---|
614 | int i = 0;
|
---|
615 | int j = 0;
|
---|
616 | AP.Complex[] tmp = new AP.Complex[0];
|
---|
617 |
|
---|
618 | if (n < 1) {
|
---|
619 | info = -1;
|
---|
620 | return;
|
---|
621 | }
|
---|
622 | info = 1;
|
---|
623 |
|
---|
624 | //
|
---|
625 | // calculate condition numbers
|
---|
626 | //
|
---|
627 | rep.r1 = rcond.cmatrixtrrcond1(ref a, n, isupper, isunit);
|
---|
628 | rep.rinf = rcond.cmatrixtrrcondinf(ref a, n, isupper, isunit);
|
---|
629 | if ((double)(rep.r1) < (double)(rcond.rcondthreshold()) | (double)(rep.rinf) < (double)(rcond.rcondthreshold())) {
|
---|
630 | for (i = 0; i <= n - 1; i++) {
|
---|
631 | for (j = 0; j <= n - 1; j++) {
|
---|
632 | a[i, j] = 0;
|
---|
633 | }
|
---|
634 | }
|
---|
635 | rep.r1 = 0;
|
---|
636 | rep.rinf = 0;
|
---|
637 | info = -3;
|
---|
638 | return;
|
---|
639 | }
|
---|
640 |
|
---|
641 | //
|
---|
642 | // Invert
|
---|
643 | //
|
---|
644 | tmp = new AP.Complex[n];
|
---|
645 | cmatrixtrinverserec(ref a, 0, n, isupper, isunit, ref tmp, ref info, ref rep);
|
---|
646 | }
|
---|
647 |
|
---|
648 |
|
---|
649 | /*************************************************************************
|
---|
650 | Triangular matrix inversion, recursive subroutine
|
---|
651 |
|
---|
652 | -- ALGLIB --
|
---|
653 | 05.02.2010, Bochkanov Sergey.
|
---|
654 | Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
---|
655 | Courant Institute, Argonne National Lab, and Rice University
|
---|
656 | February 29, 1992.
|
---|
657 | *************************************************************************/
|
---|
658 | private static void rmatrixtrinverserec(ref double[,] a,
|
---|
659 | int offs,
|
---|
660 | int n,
|
---|
661 | bool isupper,
|
---|
662 | bool isunit,
|
---|
663 | ref double[] tmp,
|
---|
664 | ref int info,
|
---|
665 | ref matinvreport rep) {
|
---|
666 | int n1 = 0;
|
---|
667 | int n2 = 0;
|
---|
668 | int i = 0;
|
---|
669 | int j = 0;
|
---|
670 | double v = 0;
|
---|
671 | double ajj = 0;
|
---|
672 | int i_ = 0;
|
---|
673 | int i1_ = 0;
|
---|
674 |
|
---|
675 | if (n < 1) {
|
---|
676 | info = -1;
|
---|
677 | return;
|
---|
678 | }
|
---|
679 |
|
---|
680 | //
|
---|
681 | // Base case
|
---|
682 | //
|
---|
683 | if (n <= ablas.ablasblocksize(ref a)) {
|
---|
684 | if (isupper) {
|
---|
685 |
|
---|
686 | //
|
---|
687 | // Compute inverse of upper triangular matrix.
|
---|
688 | //
|
---|
689 | for (j = 0; j <= n - 1; j++) {
|
---|
690 | if (!isunit) {
|
---|
691 | if ((double)(a[offs + j, offs + j]) == (double)(0)) {
|
---|
692 | info = -3;
|
---|
693 | return;
|
---|
694 | }
|
---|
695 | a[offs + j, offs + j] = 1 / a[offs + j, offs + j];
|
---|
696 | ajj = -a[offs + j, offs + j];
|
---|
697 | } else {
|
---|
698 | ajj = -1;
|
---|
699 | }
|
---|
700 |
|
---|
701 | //
|
---|
702 | // Compute elements 1:j-1 of j-th column.
|
---|
703 | //
|
---|
704 | if (j > 0) {
|
---|
705 | i1_ = (offs + 0) - (0);
|
---|
706 | for (i_ = 0; i_ <= j - 1; i_++) {
|
---|
707 | tmp[i_] = a[i_ + i1_, offs + j];
|
---|
708 | }
|
---|
709 | for (i = 0; i <= j - 1; i++) {
|
---|
710 | if (i < j - 1) {
|
---|
711 | i1_ = (i + 1) - (offs + i + 1);
|
---|
712 | v = 0.0;
|
---|
713 | for (i_ = offs + i + 1; i_ <= offs + j - 1; i_++) {
|
---|
714 | v += a[offs + i, i_] * tmp[i_ + i1_];
|
---|
715 | }
|
---|
716 | } else {
|
---|
717 | v = 0;
|
---|
718 | }
|
---|
719 | if (!isunit) {
|
---|
720 | a[offs + i, offs + j] = v + a[offs + i, offs + i] * tmp[i];
|
---|
721 | } else {
|
---|
722 | a[offs + i, offs + j] = v + tmp[i];
|
---|
723 | }
|
---|
724 | }
|
---|
725 | for (i_ = offs + 0; i_ <= offs + j - 1; i_++) {
|
---|
726 | a[i_, offs + j] = ajj * a[i_, offs + j];
|
---|
727 | }
|
---|
728 | }
|
---|
729 | }
|
---|
730 | } else {
|
---|
731 |
|
---|
732 | //
|
---|
733 | // Compute inverse of lower triangular matrix.
|
---|
734 | //
|
---|
735 | for (j = n - 1; j >= 0; j--) {
|
---|
736 | if (!isunit) {
|
---|
737 | if ((double)(a[offs + j, offs + j]) == (double)(0)) {
|
---|
738 | info = -3;
|
---|
739 | return;
|
---|
740 | }
|
---|
741 | a[offs + j, offs + j] = 1 / a[offs + j, offs + j];
|
---|
742 | ajj = -a[offs + j, offs + j];
|
---|
743 | } else {
|
---|
744 | ajj = -1;
|
---|
745 | }
|
---|
746 | if (j < n - 1) {
|
---|
747 |
|
---|
748 | //
|
---|
749 | // Compute elements j+1:n of j-th column.
|
---|
750 | //
|
---|
751 | i1_ = (offs + j + 1) - (j + 1);
|
---|
752 | for (i_ = j + 1; i_ <= n - 1; i_++) {
|
---|
753 | tmp[i_] = a[i_ + i1_, offs + j];
|
---|
754 | }
|
---|
755 | for (i = j + 1; i <= n - 1; i++) {
|
---|
756 | if (i > j + 1) {
|
---|
757 | i1_ = (j + 1) - (offs + j + 1);
|
---|
758 | v = 0.0;
|
---|
759 | for (i_ = offs + j + 1; i_ <= offs + i - 1; i_++) {
|
---|
760 | v += a[offs + i, i_] * tmp[i_ + i1_];
|
---|
761 | }
|
---|
762 | } else {
|
---|
763 | v = 0;
|
---|
764 | }
|
---|
765 | if (!isunit) {
|
---|
766 | a[offs + i, offs + j] = v + a[offs + i, offs + i] * tmp[i];
|
---|
767 | } else {
|
---|
768 | a[offs + i, offs + j] = v + tmp[i];
|
---|
769 | }
|
---|
770 | }
|
---|
771 | for (i_ = offs + j + 1; i_ <= offs + n - 1; i_++) {
|
---|
772 | a[i_, offs + j] = ajj * a[i_, offs + j];
|
---|
773 | }
|
---|
774 | }
|
---|
775 | }
|
---|
776 | }
|
---|
777 | return;
|
---|
778 | }
|
---|
779 |
|
---|
780 | //
|
---|
781 | // Recursive case
|
---|
782 | //
|
---|
783 | ablas.ablassplitlength(ref a, n, ref n1, ref n2);
|
---|
784 | if (n2 > 0) {
|
---|
785 | if (isupper) {
|
---|
786 | for (i = 0; i <= n1 - 1; i++) {
|
---|
787 | for (i_ = offs + n1; i_ <= offs + n - 1; i_++) {
|
---|
788 | a[offs + i, i_] = -1 * a[offs + i, i_];
|
---|
789 | }
|
---|
790 | }
|
---|
791 | ablas.rmatrixlefttrsm(n1, n2, ref a, offs, offs, isupper, isunit, 0, ref a, offs, offs + n1);
|
---|
792 | ablas.rmatrixrighttrsm(n1, n2, ref a, offs + n1, offs + n1, isupper, isunit, 0, ref a, offs, offs + n1);
|
---|
793 | } else {
|
---|
794 | for (i = 0; i <= n2 - 1; i++) {
|
---|
795 | for (i_ = offs; i_ <= offs + n1 - 1; i_++) {
|
---|
796 | a[offs + n1 + i, i_] = -1 * a[offs + n1 + i, i_];
|
---|
797 | }
|
---|
798 | }
|
---|
799 | ablas.rmatrixrighttrsm(n2, n1, ref a, offs, offs, isupper, isunit, 0, ref a, offs + n1, offs);
|
---|
800 | ablas.rmatrixlefttrsm(n2, n1, ref a, offs + n1, offs + n1, isupper, isunit, 0, ref a, offs + n1, offs);
|
---|
801 | }
|
---|
802 | rmatrixtrinverserec(ref a, offs + n1, n2, isupper, isunit, ref tmp, ref info, ref rep);
|
---|
803 | }
|
---|
804 | rmatrixtrinverserec(ref a, offs, n1, isupper, isunit, ref tmp, ref info, ref rep);
|
---|
805 | }
|
---|
806 |
|
---|
807 |
|
---|
808 | /*************************************************************************
|
---|
809 | Triangular matrix inversion, recursive subroutine
|
---|
810 |
|
---|
811 | -- ALGLIB --
|
---|
812 | 05.02.2010, Bochkanov Sergey.
|
---|
813 | Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
---|
814 | Courant Institute, Argonne National Lab, and Rice University
|
---|
815 | February 29, 1992.
|
---|
816 | *************************************************************************/
|
---|
817 | private static void cmatrixtrinverserec(ref AP.Complex[,] a,
|
---|
818 | int offs,
|
---|
819 | int n,
|
---|
820 | bool isupper,
|
---|
821 | bool isunit,
|
---|
822 | ref AP.Complex[] tmp,
|
---|
823 | ref int info,
|
---|
824 | ref matinvreport rep) {
|
---|
825 | int n1 = 0;
|
---|
826 | int n2 = 0;
|
---|
827 | int i = 0;
|
---|
828 | int j = 0;
|
---|
829 | AP.Complex v = 0;
|
---|
830 | AP.Complex ajj = 0;
|
---|
831 | int i_ = 0;
|
---|
832 | int i1_ = 0;
|
---|
833 |
|
---|
834 | if (n < 1) {
|
---|
835 | info = -1;
|
---|
836 | return;
|
---|
837 | }
|
---|
838 |
|
---|
839 | //
|
---|
840 | // Base case
|
---|
841 | //
|
---|
842 | if (n <= ablas.ablascomplexblocksize(ref a)) {
|
---|
843 | if (isupper) {
|
---|
844 |
|
---|
845 | //
|
---|
846 | // Compute inverse of upper triangular matrix.
|
---|
847 | //
|
---|
848 | for (j = 0; j <= n - 1; j++) {
|
---|
849 | if (!isunit) {
|
---|
850 | if (a[offs + j, offs + j] == 0) {
|
---|
851 | info = -3;
|
---|
852 | return;
|
---|
853 | }
|
---|
854 | a[offs + j, offs + j] = 1 / a[offs + j, offs + j];
|
---|
855 | ajj = -a[offs + j, offs + j];
|
---|
856 | } else {
|
---|
857 | ajj = -1;
|
---|
858 | }
|
---|
859 |
|
---|
860 | //
|
---|
861 | // Compute elements 1:j-1 of j-th column.
|
---|
862 | //
|
---|
863 | if (j > 0) {
|
---|
864 | i1_ = (offs + 0) - (0);
|
---|
865 | for (i_ = 0; i_ <= j - 1; i_++) {
|
---|
866 | tmp[i_] = a[i_ + i1_, offs + j];
|
---|
867 | }
|
---|
868 | for (i = 0; i <= j - 1; i++) {
|
---|
869 | if (i < j - 1) {
|
---|
870 | i1_ = (i + 1) - (offs + i + 1);
|
---|
871 | v = 0.0;
|
---|
872 | for (i_ = offs + i + 1; i_ <= offs + j - 1; i_++) {
|
---|
873 | v += a[offs + i, i_] * tmp[i_ + i1_];
|
---|
874 | }
|
---|
875 | } else {
|
---|
876 | v = 0;
|
---|
877 | }
|
---|
878 | if (!isunit) {
|
---|
879 | a[offs + i, offs + j] = v + a[offs + i, offs + i] * tmp[i];
|
---|
880 | } else {
|
---|
881 | a[offs + i, offs + j] = v + tmp[i];
|
---|
882 | }
|
---|
883 | }
|
---|
884 | for (i_ = offs + 0; i_ <= offs + j - 1; i_++) {
|
---|
885 | a[i_, offs + j] = ajj * a[i_, offs + j];
|
---|
886 | }
|
---|
887 | }
|
---|
888 | }
|
---|
889 | } else {
|
---|
890 |
|
---|
891 | //
|
---|
892 | // Compute inverse of lower triangular matrix.
|
---|
893 | //
|
---|
894 | for (j = n - 1; j >= 0; j--) {
|
---|
895 | if (!isunit) {
|
---|
896 | if (a[offs + j, offs + j] == 0) {
|
---|
897 | info = -3;
|
---|
898 | return;
|
---|
899 | }
|
---|
900 | a[offs + j, offs + j] = 1 / a[offs + j, offs + j];
|
---|
901 | ajj = -a[offs + j, offs + j];
|
---|
902 | } else {
|
---|
903 | ajj = -1;
|
---|
904 | }
|
---|
905 | if (j < n - 1) {
|
---|
906 |
|
---|
907 | //
|
---|
908 | // Compute elements j+1:n of j-th column.
|
---|
909 | //
|
---|
910 | i1_ = (offs + j + 1) - (j + 1);
|
---|
911 | for (i_ = j + 1; i_ <= n - 1; i_++) {
|
---|
912 | tmp[i_] = a[i_ + i1_, offs + j];
|
---|
913 | }
|
---|
914 | for (i = j + 1; i <= n - 1; i++) {
|
---|
915 | if (i > j + 1) {
|
---|
916 | i1_ = (j + 1) - (offs + j + 1);
|
---|
917 | v = 0.0;
|
---|
918 | for (i_ = offs + j + 1; i_ <= offs + i - 1; i_++) {
|
---|
919 | v += a[offs + i, i_] * tmp[i_ + i1_];
|
---|
920 | }
|
---|
921 | } else {
|
---|
922 | v = 0;
|
---|
923 | }
|
---|
924 | if (!isunit) {
|
---|
925 | a[offs + i, offs + j] = v + a[offs + i, offs + i] * tmp[i];
|
---|
926 | } else {
|
---|
927 | a[offs + i, offs + j] = v + tmp[i];
|
---|
928 | }
|
---|
929 | }
|
---|
930 | for (i_ = offs + j + 1; i_ <= offs + n - 1; i_++) {
|
---|
931 | a[i_, offs + j] = ajj * a[i_, offs + j];
|
---|
932 | }
|
---|
933 | }
|
---|
934 | }
|
---|
935 | }
|
---|
936 | return;
|
---|
937 | }
|
---|
938 |
|
---|
939 | //
|
---|
940 | // Recursive case
|
---|
941 | //
|
---|
942 | ablas.ablascomplexsplitlength(ref a, n, ref n1, ref n2);
|
---|
943 | if (n2 > 0) {
|
---|
944 | if (isupper) {
|
---|
945 | for (i = 0; i <= n1 - 1; i++) {
|
---|
946 | for (i_ = offs + n1; i_ <= offs + n - 1; i_++) {
|
---|
947 | a[offs + i, i_] = -1 * a[offs + i, i_];
|
---|
948 | }
|
---|
949 | }
|
---|
950 | ablas.cmatrixlefttrsm(n1, n2, ref a, offs, offs, isupper, isunit, 0, ref a, offs, offs + n1);
|
---|
951 | ablas.cmatrixrighttrsm(n1, n2, ref a, offs + n1, offs + n1, isupper, isunit, 0, ref a, offs, offs + n1);
|
---|
952 | } else {
|
---|
953 | for (i = 0; i <= n2 - 1; i++) {
|
---|
954 | for (i_ = offs; i_ <= offs + n1 - 1; i_++) {
|
---|
955 | a[offs + n1 + i, i_] = -1 * a[offs + n1 + i, i_];
|
---|
956 | }
|
---|
957 | }
|
---|
958 | ablas.cmatrixrighttrsm(n2, n1, ref a, offs, offs, isupper, isunit, 0, ref a, offs + n1, offs);
|
---|
959 | ablas.cmatrixlefttrsm(n2, n1, ref a, offs + n1, offs + n1, isupper, isunit, 0, ref a, offs + n1, offs);
|
---|
960 | }
|
---|
961 | cmatrixtrinverserec(ref a, offs + n1, n2, isupper, isunit, ref tmp, ref info, ref rep);
|
---|
962 | }
|
---|
963 | cmatrixtrinverserec(ref a, offs, n1, isupper, isunit, ref tmp, ref info, ref rep);
|
---|
964 | }
|
---|
965 |
|
---|
966 |
|
---|
967 | private static void rmatrixluinverserec(ref double[,] a,
|
---|
968 | int offs,
|
---|
969 | int n,
|
---|
970 | ref double[] work,
|
---|
971 | ref int info,
|
---|
972 | ref matinvreport rep) {
|
---|
973 | int i = 0;
|
---|
974 | int iws = 0;
|
---|
975 | int j = 0;
|
---|
976 | int jb = 0;
|
---|
977 | int jj = 0;
|
---|
978 | int jp = 0;
|
---|
979 | int k = 0;
|
---|
980 | double v = 0;
|
---|
981 | int n1 = 0;
|
---|
982 | int n2 = 0;
|
---|
983 | int i_ = 0;
|
---|
984 | int i1_ = 0;
|
---|
985 |
|
---|
986 | if (n < 1) {
|
---|
987 | info = -1;
|
---|
988 | return;
|
---|
989 | }
|
---|
990 |
|
---|
991 | //
|
---|
992 | // Base case
|
---|
993 | //
|
---|
994 | if (n <= ablas.ablasblocksize(ref a)) {
|
---|
995 |
|
---|
996 | //
|
---|
997 | // Form inv(U)
|
---|
998 | //
|
---|
999 | rmatrixtrinverserec(ref a, offs, n, true, false, ref work, ref info, ref rep);
|
---|
1000 | if (info <= 0) {
|
---|
1001 | return;
|
---|
1002 | }
|
---|
1003 |
|
---|
1004 | //
|
---|
1005 | // Solve the equation inv(A)*L = inv(U) for inv(A).
|
---|
1006 | //
|
---|
1007 | for (j = n - 1; j >= 0; j--) {
|
---|
1008 |
|
---|
1009 | //
|
---|
1010 | // Copy current column of L to WORK and replace with zeros.
|
---|
1011 | //
|
---|
1012 | for (i = j + 1; i <= n - 1; i++) {
|
---|
1013 | work[i] = a[offs + i, offs + j];
|
---|
1014 | a[offs + i, offs + j] = 0;
|
---|
1015 | }
|
---|
1016 |
|
---|
1017 | //
|
---|
1018 | // Compute current column of inv(A).
|
---|
1019 | //
|
---|
1020 | if (j < n - 1) {
|
---|
1021 | for (i = 0; i <= n - 1; i++) {
|
---|
1022 | i1_ = (j + 1) - (offs + j + 1);
|
---|
1023 | v = 0.0;
|
---|
1024 | for (i_ = offs + j + 1; i_ <= offs + n - 1; i_++) {
|
---|
1025 | v += a[offs + i, i_] * work[i_ + i1_];
|
---|
1026 | }
|
---|
1027 | a[offs + i, offs + j] = a[offs + i, offs + j] - v;
|
---|
1028 | }
|
---|
1029 | }
|
---|
1030 | }
|
---|
1031 | return;
|
---|
1032 | }
|
---|
1033 |
|
---|
1034 | //
|
---|
1035 | // Recursive code:
|
---|
1036 | //
|
---|
1037 | // ( L1 ) ( U1 U12 )
|
---|
1038 | // A = ( ) * ( )
|
---|
1039 | // ( L12 L2 ) ( U2 )
|
---|
1040 | //
|
---|
1041 | // ( W X )
|
---|
1042 | // A^-1 = ( )
|
---|
1043 | // ( Y Z )
|
---|
1044 | //
|
---|
1045 | ablas.ablassplitlength(ref a, n, ref n1, ref n2);
|
---|
1046 | System.Diagnostics.Debug.Assert(n2 > 0, "LUInverseRec: internal error!");
|
---|
1047 |
|
---|
1048 | //
|
---|
1049 | // X := inv(U1)*U12*inv(U2)
|
---|
1050 | //
|
---|
1051 | ablas.rmatrixlefttrsm(n1, n2, ref a, offs, offs, true, false, 0, ref a, offs, offs + n1);
|
---|
1052 | ablas.rmatrixrighttrsm(n1, n2, ref a, offs + n1, offs + n1, true, false, 0, ref a, offs, offs + n1);
|
---|
1053 |
|
---|
1054 | //
|
---|
1055 | // Y := inv(L2)*L12*inv(L1)
|
---|
1056 | //
|
---|
1057 | ablas.rmatrixlefttrsm(n2, n1, ref a, offs + n1, offs + n1, false, true, 0, ref a, offs + n1, offs);
|
---|
1058 | ablas.rmatrixrighttrsm(n2, n1, ref a, offs, offs, false, true, 0, ref a, offs + n1, offs);
|
---|
1059 |
|
---|
1060 | //
|
---|
1061 | // W := inv(L1*U1)+X*Y
|
---|
1062 | //
|
---|
1063 | rmatrixluinverserec(ref a, offs, n1, ref work, ref info, ref rep);
|
---|
1064 | if (info <= 0) {
|
---|
1065 | return;
|
---|
1066 | }
|
---|
1067 | ablas.rmatrixgemm(n1, n1, n2, 1.0, ref a, offs, offs + n1, 0, ref a, offs + n1, offs, 0, 1.0, ref a, offs, offs);
|
---|
1068 |
|
---|
1069 | //
|
---|
1070 | // X := -X*inv(L2)
|
---|
1071 | // Y := -inv(U2)*Y
|
---|
1072 | //
|
---|
1073 | ablas.rmatrixrighttrsm(n1, n2, ref a, offs + n1, offs + n1, false, true, 0, ref a, offs, offs + n1);
|
---|
1074 | for (i = 0; i <= n1 - 1; i++) {
|
---|
1075 | for (i_ = offs + n1; i_ <= offs + n - 1; i_++) {
|
---|
1076 | a[offs + i, i_] = -1 * a[offs + i, i_];
|
---|
1077 | }
|
---|
1078 | }
|
---|
1079 | ablas.rmatrixlefttrsm(n2, n1, ref a, offs + n1, offs + n1, true, false, 0, ref a, offs + n1, offs);
|
---|
1080 | for (i = 0; i <= n2 - 1; i++) {
|
---|
1081 | for (i_ = offs; i_ <= offs + n1 - 1; i_++) {
|
---|
1082 | a[offs + n1 + i, i_] = -1 * a[offs + n1 + i, i_];
|
---|
1083 | }
|
---|
1084 | }
|
---|
1085 |
|
---|
1086 | //
|
---|
1087 | // Z := inv(L2*U2)
|
---|
1088 | //
|
---|
1089 | rmatrixluinverserec(ref a, offs + n1, n2, ref work, ref info, ref rep);
|
---|
1090 | }
|
---|
1091 |
|
---|
1092 |
|
---|
1093 | private static void cmatrixluinverserec(ref AP.Complex[,] a,
|
---|
1094 | int offs,
|
---|
1095 | int n,
|
---|
1096 | ref AP.Complex[] work,
|
---|
1097 | ref int info,
|
---|
1098 | ref matinvreport rep) {
|
---|
1099 | int i = 0;
|
---|
1100 | int iws = 0;
|
---|
1101 | int j = 0;
|
---|
1102 | int jb = 0;
|
---|
1103 | int jj = 0;
|
---|
1104 | int jp = 0;
|
---|
1105 | int k = 0;
|
---|
1106 | AP.Complex v = 0;
|
---|
1107 | int n1 = 0;
|
---|
1108 | int n2 = 0;
|
---|
1109 | int i_ = 0;
|
---|
1110 | int i1_ = 0;
|
---|
1111 |
|
---|
1112 | if (n < 1) {
|
---|
1113 | info = -1;
|
---|
1114 | return;
|
---|
1115 | }
|
---|
1116 |
|
---|
1117 | //
|
---|
1118 | // Base case
|
---|
1119 | //
|
---|
1120 | if (n <= ablas.ablascomplexblocksize(ref a)) {
|
---|
1121 |
|
---|
1122 | //
|
---|
1123 | // Form inv(U)
|
---|
1124 | //
|
---|
1125 | cmatrixtrinverserec(ref a, offs, n, true, false, ref work, ref info, ref rep);
|
---|
1126 | if (info <= 0) {
|
---|
1127 | return;
|
---|
1128 | }
|
---|
1129 |
|
---|
1130 | //
|
---|
1131 | // Solve the equation inv(A)*L = inv(U) for inv(A).
|
---|
1132 | //
|
---|
1133 | for (j = n - 1; j >= 0; j--) {
|
---|
1134 |
|
---|
1135 | //
|
---|
1136 | // Copy current column of L to WORK and replace with zeros.
|
---|
1137 | //
|
---|
1138 | for (i = j + 1; i <= n - 1; i++) {
|
---|
1139 | work[i] = a[offs + i, offs + j];
|
---|
1140 | a[offs + i, offs + j] = 0;
|
---|
1141 | }
|
---|
1142 |
|
---|
1143 | //
|
---|
1144 | // Compute current column of inv(A).
|
---|
1145 | //
|
---|
1146 | if (j < n - 1) {
|
---|
1147 | for (i = 0; i <= n - 1; i++) {
|
---|
1148 | i1_ = (j + 1) - (offs + j + 1);
|
---|
1149 | v = 0.0;
|
---|
1150 | for (i_ = offs + j + 1; i_ <= offs + n - 1; i_++) {
|
---|
1151 | v += a[offs + i, i_] * work[i_ + i1_];
|
---|
1152 | }
|
---|
1153 | a[offs + i, offs + j] = a[offs + i, offs + j] - v;
|
---|
1154 | }
|
---|
1155 | }
|
---|
1156 | }
|
---|
1157 | return;
|
---|
1158 | }
|
---|
1159 |
|
---|
1160 | //
|
---|
1161 | // Recursive code:
|
---|
1162 | //
|
---|
1163 | // ( L1 ) ( U1 U12 )
|
---|
1164 | // A = ( ) * ( )
|
---|
1165 | // ( L12 L2 ) ( U2 )
|
---|
1166 | //
|
---|
1167 | // ( W X )
|
---|
1168 | // A^-1 = ( )
|
---|
1169 | // ( Y Z )
|
---|
1170 | //
|
---|
1171 | ablas.ablascomplexsplitlength(ref a, n, ref n1, ref n2);
|
---|
1172 | System.Diagnostics.Debug.Assert(n2 > 0, "LUInverseRec: internal error!");
|
---|
1173 |
|
---|
1174 | //
|
---|
1175 | // X := inv(U1)*U12*inv(U2)
|
---|
1176 | //
|
---|
1177 | ablas.cmatrixlefttrsm(n1, n2, ref a, offs, offs, true, false, 0, ref a, offs, offs + n1);
|
---|
1178 | ablas.cmatrixrighttrsm(n1, n2, ref a, offs + n1, offs + n1, true, false, 0, ref a, offs, offs + n1);
|
---|
1179 |
|
---|
1180 | //
|
---|
1181 | // Y := inv(L2)*L12*inv(L1)
|
---|
1182 | //
|
---|
1183 | ablas.cmatrixlefttrsm(n2, n1, ref a, offs + n1, offs + n1, false, true, 0, ref a, offs + n1, offs);
|
---|
1184 | ablas.cmatrixrighttrsm(n2, n1, ref a, offs, offs, false, true, 0, ref a, offs + n1, offs);
|
---|
1185 |
|
---|
1186 | //
|
---|
1187 | // W := inv(L1*U1)+X*Y
|
---|
1188 | //
|
---|
1189 | cmatrixluinverserec(ref a, offs, n1, ref work, ref info, ref rep);
|
---|
1190 | if (info <= 0) {
|
---|
1191 | return;
|
---|
1192 | }
|
---|
1193 | ablas.cmatrixgemm(n1, n1, n2, 1.0, ref a, offs, offs + n1, 0, ref a, offs + n1, offs, 0, 1.0, ref a, offs, offs);
|
---|
1194 |
|
---|
1195 | //
|
---|
1196 | // X := -X*inv(L2)
|
---|
1197 | // Y := -inv(U2)*Y
|
---|
1198 | //
|
---|
1199 | ablas.cmatrixrighttrsm(n1, n2, ref a, offs + n1, offs + n1, false, true, 0, ref a, offs, offs + n1);
|
---|
1200 | for (i = 0; i <= n1 - 1; i++) {
|
---|
1201 | for (i_ = offs + n1; i_ <= offs + n - 1; i_++) {
|
---|
1202 | a[offs + i, i_] = -1 * a[offs + i, i_];
|
---|
1203 | }
|
---|
1204 | }
|
---|
1205 | ablas.cmatrixlefttrsm(n2, n1, ref a, offs + n1, offs + n1, true, false, 0, ref a, offs + n1, offs);
|
---|
1206 | for (i = 0; i <= n2 - 1; i++) {
|
---|
1207 | for (i_ = offs; i_ <= offs + n1 - 1; i_++) {
|
---|
1208 | a[offs + n1 + i, i_] = -1 * a[offs + n1 + i, i_];
|
---|
1209 | }
|
---|
1210 | }
|
---|
1211 |
|
---|
1212 | //
|
---|
1213 | // Z := inv(L2*U2)
|
---|
1214 | //
|
---|
1215 | cmatrixluinverserec(ref a, offs + n1, n2, ref work, ref info, ref rep);
|
---|
1216 | }
|
---|
1217 |
|
---|
1218 |
|
---|
1219 | /*************************************************************************
|
---|
1220 | Recursive subroutine for SPD inversion.
|
---|
1221 |
|
---|
1222 | -- ALGLIB routine --
|
---|
1223 | 10.02.2010
|
---|
1224 | Bochkanov Sergey
|
---|
1225 | *************************************************************************/
|
---|
1226 | private static void spdmatrixcholeskyinverserec(ref double[,] a,
|
---|
1227 | int offs,
|
---|
1228 | int n,
|
---|
1229 | bool isupper,
|
---|
1230 | ref double[] tmp) {
|
---|
1231 | int i = 0;
|
---|
1232 | int j = 0;
|
---|
1233 | double v = 0;
|
---|
1234 | int n1 = 0;
|
---|
1235 | int n2 = 0;
|
---|
1236 | int info2 = 0;
|
---|
1237 | matinvreport rep2 = new matinvreport();
|
---|
1238 | int i_ = 0;
|
---|
1239 | int i1_ = 0;
|
---|
1240 |
|
---|
1241 | if (n < 1) {
|
---|
1242 | return;
|
---|
1243 | }
|
---|
1244 |
|
---|
1245 | //
|
---|
1246 | // Base case
|
---|
1247 | //
|
---|
1248 | if (n <= ablas.ablasblocksize(ref a)) {
|
---|
1249 | rmatrixtrinverserec(ref a, offs, n, isupper, false, ref tmp, ref info2, ref rep2);
|
---|
1250 | if (isupper) {
|
---|
1251 |
|
---|
1252 | //
|
---|
1253 | // Compute the product U * U'.
|
---|
1254 | // NOTE: we never assume that diagonal of U is real
|
---|
1255 | //
|
---|
1256 | for (i = 0; i <= n - 1; i++) {
|
---|
1257 | if (i == 0) {
|
---|
1258 |
|
---|
1259 | //
|
---|
1260 | // 1x1 matrix
|
---|
1261 | //
|
---|
1262 | a[offs + i, offs + i] = AP.Math.Sqr(a[offs + i, offs + i]);
|
---|
1263 | } else {
|
---|
1264 |
|
---|
1265 | //
|
---|
1266 | // (I+1)x(I+1) matrix,
|
---|
1267 | //
|
---|
1268 | // ( A11 A12 ) ( A11^H ) ( A11*A11^H+A12*A12^H A12*A22^H )
|
---|
1269 | // ( ) * ( ) = ( )
|
---|
1270 | // ( A22 ) ( A12^H A22^H ) ( A22*A12^H A22*A22^H )
|
---|
1271 | //
|
---|
1272 | // A11 is IxI, A22 is 1x1.
|
---|
1273 | //
|
---|
1274 | i1_ = (offs) - (0);
|
---|
1275 | for (i_ = 0; i_ <= i - 1; i_++) {
|
---|
1276 | tmp[i_] = a[i_ + i1_, offs + i];
|
---|
1277 | }
|
---|
1278 | for (j = 0; j <= i - 1; j++) {
|
---|
1279 | v = a[offs + j, offs + i];
|
---|
1280 | i1_ = (j) - (offs + j);
|
---|
1281 | for (i_ = offs + j; i_ <= offs + i - 1; i_++) {
|
---|
1282 | a[offs + j, i_] = a[offs + j, i_] + v * tmp[i_ + i1_];
|
---|
1283 | }
|
---|
1284 | }
|
---|
1285 | v = a[offs + i, offs + i];
|
---|
1286 | for (i_ = offs; i_ <= offs + i - 1; i_++) {
|
---|
1287 | a[i_, offs + i] = v * a[i_, offs + i];
|
---|
1288 | }
|
---|
1289 | a[offs + i, offs + i] = AP.Math.Sqr(a[offs + i, offs + i]);
|
---|
1290 | }
|
---|
1291 | }
|
---|
1292 | } else {
|
---|
1293 |
|
---|
1294 | //
|
---|
1295 | // Compute the product L' * L
|
---|
1296 | // NOTE: we never assume that diagonal of L is real
|
---|
1297 | //
|
---|
1298 | for (i = 0; i <= n - 1; i++) {
|
---|
1299 | if (i == 0) {
|
---|
1300 |
|
---|
1301 | //
|
---|
1302 | // 1x1 matrix
|
---|
1303 | //
|
---|
1304 | a[offs + i, offs + i] = AP.Math.Sqr(a[offs + i, offs + i]);
|
---|
1305 | } else {
|
---|
1306 |
|
---|
1307 | //
|
---|
1308 | // (I+1)x(I+1) matrix,
|
---|
1309 | //
|
---|
1310 | // ( A11^H A21^H ) ( A11 ) ( A11^H*A11+A21^H*A21 A21^H*A22 )
|
---|
1311 | // ( ) * ( ) = ( )
|
---|
1312 | // ( A22^H ) ( A21 A22 ) ( A22^H*A21 A22^H*A22 )
|
---|
1313 | //
|
---|
1314 | // A11 is IxI, A22 is 1x1.
|
---|
1315 | //
|
---|
1316 | i1_ = (offs) - (0);
|
---|
1317 | for (i_ = 0; i_ <= i - 1; i_++) {
|
---|
1318 | tmp[i_] = a[offs + i, i_ + i1_];
|
---|
1319 | }
|
---|
1320 | for (j = 0; j <= i - 1; j++) {
|
---|
1321 | v = a[offs + i, offs + j];
|
---|
1322 | i1_ = (0) - (offs);
|
---|
1323 | for (i_ = offs; i_ <= offs + j; i_++) {
|
---|
1324 | a[offs + j, i_] = a[offs + j, i_] + v * tmp[i_ + i1_];
|
---|
1325 | }
|
---|
1326 | }
|
---|
1327 | v = a[offs + i, offs + i];
|
---|
1328 | for (i_ = offs; i_ <= offs + i - 1; i_++) {
|
---|
1329 | a[offs + i, i_] = v * a[offs + i, i_];
|
---|
1330 | }
|
---|
1331 | a[offs + i, offs + i] = AP.Math.Sqr(a[offs + i, offs + i]);
|
---|
1332 | }
|
---|
1333 | }
|
---|
1334 | }
|
---|
1335 | return;
|
---|
1336 | }
|
---|
1337 |
|
---|
1338 | //
|
---|
1339 | // Recursive code: triangular factor inversion merged with
|
---|
1340 | // UU' or L'L multiplication
|
---|
1341 | //
|
---|
1342 | ablas.ablassplitlength(ref a, n, ref n1, ref n2);
|
---|
1343 |
|
---|
1344 | //
|
---|
1345 | // form off-diagonal block of trangular inverse
|
---|
1346 | //
|
---|
1347 | if (isupper) {
|
---|
1348 | for (i = 0; i <= n1 - 1; i++) {
|
---|
1349 | for (i_ = offs + n1; i_ <= offs + n - 1; i_++) {
|
---|
1350 | a[offs + i, i_] = -1 * a[offs + i, i_];
|
---|
1351 | }
|
---|
1352 | }
|
---|
1353 | ablas.rmatrixlefttrsm(n1, n2, ref a, offs, offs, isupper, false, 0, ref a, offs, offs + n1);
|
---|
1354 | ablas.rmatrixrighttrsm(n1, n2, ref a, offs + n1, offs + n1, isupper, false, 0, ref a, offs, offs + n1);
|
---|
1355 | } else {
|
---|
1356 | for (i = 0; i <= n2 - 1; i++) {
|
---|
1357 | for (i_ = offs; i_ <= offs + n1 - 1; i_++) {
|
---|
1358 | a[offs + n1 + i, i_] = -1 * a[offs + n1 + i, i_];
|
---|
1359 | }
|
---|
1360 | }
|
---|
1361 | ablas.rmatrixrighttrsm(n2, n1, ref a, offs, offs, isupper, false, 0, ref a, offs + n1, offs);
|
---|
1362 | ablas.rmatrixlefttrsm(n2, n1, ref a, offs + n1, offs + n1, isupper, false, 0, ref a, offs + n1, offs);
|
---|
1363 | }
|
---|
1364 |
|
---|
1365 | //
|
---|
1366 | // invert first diagonal block
|
---|
1367 | //
|
---|
1368 | spdmatrixcholeskyinverserec(ref a, offs, n1, isupper, ref tmp);
|
---|
1369 |
|
---|
1370 | //
|
---|
1371 | // update first diagonal block with off-diagonal block,
|
---|
1372 | // update off-diagonal block
|
---|
1373 | //
|
---|
1374 | if (isupper) {
|
---|
1375 | ablas.rmatrixsyrk(n1, n2, 1.0, ref a, offs, offs + n1, 0, 1.0, ref a, offs, offs, isupper);
|
---|
1376 | ablas.rmatrixrighttrsm(n1, n2, ref a, offs + n1, offs + n1, isupper, false, 1, ref a, offs, offs + n1);
|
---|
1377 | } else {
|
---|
1378 | ablas.rmatrixsyrk(n1, n2, 1.0, ref a, offs + n1, offs, 1, 1.0, ref a, offs, offs, isupper);
|
---|
1379 | ablas.rmatrixlefttrsm(n2, n1, ref a, offs + n1, offs + n1, isupper, false, 1, ref a, offs + n1, offs);
|
---|
1380 | }
|
---|
1381 |
|
---|
1382 | //
|
---|
1383 | // invert second diagonal block
|
---|
1384 | //
|
---|
1385 | spdmatrixcholeskyinverserec(ref a, offs + n1, n2, isupper, ref tmp);
|
---|
1386 | }
|
---|
1387 |
|
---|
1388 |
|
---|
1389 | /*************************************************************************
|
---|
1390 | Recursive subroutine for HPD inversion.
|
---|
1391 |
|
---|
1392 | -- ALGLIB routine --
|
---|
1393 | 10.02.2010
|
---|
1394 | Bochkanov Sergey
|
---|
1395 | *************************************************************************/
|
---|
1396 | private static void hpdmatrixcholeskyinverserec(ref AP.Complex[,] a,
|
---|
1397 | int offs,
|
---|
1398 | int n,
|
---|
1399 | bool isupper,
|
---|
1400 | ref AP.Complex[] tmp) {
|
---|
1401 | int i = 0;
|
---|
1402 | int j = 0;
|
---|
1403 | AP.Complex v = 0;
|
---|
1404 | int n1 = 0;
|
---|
1405 | int n2 = 0;
|
---|
1406 | int info2 = 0;
|
---|
1407 | matinvreport rep2 = new matinvreport();
|
---|
1408 | int i_ = 0;
|
---|
1409 | int i1_ = 0;
|
---|
1410 |
|
---|
1411 | if (n < 1) {
|
---|
1412 | return;
|
---|
1413 | }
|
---|
1414 |
|
---|
1415 | //
|
---|
1416 | // Base case
|
---|
1417 | //
|
---|
1418 | if (n <= ablas.ablascomplexblocksize(ref a)) {
|
---|
1419 | cmatrixtrinverserec(ref a, offs, n, isupper, false, ref tmp, ref info2, ref rep2);
|
---|
1420 | if (isupper) {
|
---|
1421 |
|
---|
1422 | //
|
---|
1423 | // Compute the product U * U'.
|
---|
1424 | // NOTE: we never assume that diagonal of U is real
|
---|
1425 | //
|
---|
1426 | for (i = 0; i <= n - 1; i++) {
|
---|
1427 | if (i == 0) {
|
---|
1428 |
|
---|
1429 | //
|
---|
1430 | // 1x1 matrix
|
---|
1431 | //
|
---|
1432 | a[offs + i, offs + i] = AP.Math.Sqr(a[offs + i, offs + i].x) + AP.Math.Sqr(a[offs + i, offs + i].y);
|
---|
1433 | } else {
|
---|
1434 |
|
---|
1435 | //
|
---|
1436 | // (I+1)x(I+1) matrix,
|
---|
1437 | //
|
---|
1438 | // ( A11 A12 ) ( A11^H ) ( A11*A11^H+A12*A12^H A12*A22^H )
|
---|
1439 | // ( ) * ( ) = ( )
|
---|
1440 | // ( A22 ) ( A12^H A22^H ) ( A22*A12^H A22*A22^H )
|
---|
1441 | //
|
---|
1442 | // A11 is IxI, A22 is 1x1.
|
---|
1443 | //
|
---|
1444 | i1_ = (offs) - (0);
|
---|
1445 | for (i_ = 0; i_ <= i - 1; i_++) {
|
---|
1446 | tmp[i_] = AP.Math.Conj(a[i_ + i1_, offs + i]);
|
---|
1447 | }
|
---|
1448 | for (j = 0; j <= i - 1; j++) {
|
---|
1449 | v = a[offs + j, offs + i];
|
---|
1450 | i1_ = (j) - (offs + j);
|
---|
1451 | for (i_ = offs + j; i_ <= offs + i - 1; i_++) {
|
---|
1452 | a[offs + j, i_] = a[offs + j, i_] + v * tmp[i_ + i1_];
|
---|
1453 | }
|
---|
1454 | }
|
---|
1455 | v = AP.Math.Conj(a[offs + i, offs + i]);
|
---|
1456 | for (i_ = offs; i_ <= offs + i - 1; i_++) {
|
---|
1457 | a[i_, offs + i] = v * a[i_, offs + i];
|
---|
1458 | }
|
---|
1459 | a[offs + i, offs + i] = AP.Math.Sqr(a[offs + i, offs + i].x) + AP.Math.Sqr(a[offs + i, offs + i].y);
|
---|
1460 | }
|
---|
1461 | }
|
---|
1462 | } else {
|
---|
1463 |
|
---|
1464 | //
|
---|
1465 | // Compute the product L' * L
|
---|
1466 | // NOTE: we never assume that diagonal of L is real
|
---|
1467 | //
|
---|
1468 | for (i = 0; i <= n - 1; i++) {
|
---|
1469 | if (i == 0) {
|
---|
1470 |
|
---|
1471 | //
|
---|
1472 | // 1x1 matrix
|
---|
1473 | //
|
---|
1474 | a[offs + i, offs + i] = AP.Math.Sqr(a[offs + i, offs + i].x) + AP.Math.Sqr(a[offs + i, offs + i].y);
|
---|
1475 | } else {
|
---|
1476 |
|
---|
1477 | //
|
---|
1478 | // (I+1)x(I+1) matrix,
|
---|
1479 | //
|
---|
1480 | // ( A11^H A21^H ) ( A11 ) ( A11^H*A11+A21^H*A21 A21^H*A22 )
|
---|
1481 | // ( ) * ( ) = ( )
|
---|
1482 | // ( A22^H ) ( A21 A22 ) ( A22^H*A21 A22^H*A22 )
|
---|
1483 | //
|
---|
1484 | // A11 is IxI, A22 is 1x1.
|
---|
1485 | //
|
---|
1486 | i1_ = (offs) - (0);
|
---|
1487 | for (i_ = 0; i_ <= i - 1; i_++) {
|
---|
1488 | tmp[i_] = a[offs + i, i_ + i1_];
|
---|
1489 | }
|
---|
1490 | for (j = 0; j <= i - 1; j++) {
|
---|
1491 | v = AP.Math.Conj(a[offs + i, offs + j]);
|
---|
1492 | i1_ = (0) - (offs);
|
---|
1493 | for (i_ = offs; i_ <= offs + j; i_++) {
|
---|
1494 | a[offs + j, i_] = a[offs + j, i_] + v * tmp[i_ + i1_];
|
---|
1495 | }
|
---|
1496 | }
|
---|
1497 | v = AP.Math.Conj(a[offs + i, offs + i]);
|
---|
1498 | for (i_ = offs; i_ <= offs + i - 1; i_++) {
|
---|
1499 | a[offs + i, i_] = v * a[offs + i, i_];
|
---|
1500 | }
|
---|
1501 | a[offs + i, offs + i] = AP.Math.Sqr(a[offs + i, offs + i].x) + AP.Math.Sqr(a[offs + i, offs + i].y);
|
---|
1502 | }
|
---|
1503 | }
|
---|
1504 | }
|
---|
1505 | return;
|
---|
1506 | }
|
---|
1507 |
|
---|
1508 | //
|
---|
1509 | // Recursive code: triangular factor inversion merged with
|
---|
1510 | // UU' or L'L multiplication
|
---|
1511 | //
|
---|
1512 | ablas.ablascomplexsplitlength(ref a, n, ref n1, ref n2);
|
---|
1513 |
|
---|
1514 | //
|
---|
1515 | // form off-diagonal block of trangular inverse
|
---|
1516 | //
|
---|
1517 | if (isupper) {
|
---|
1518 | for (i = 0; i <= n1 - 1; i++) {
|
---|
1519 | for (i_ = offs + n1; i_ <= offs + n - 1; i_++) {
|
---|
1520 | a[offs + i, i_] = -1 * a[offs + i, i_];
|
---|
1521 | }
|
---|
1522 | }
|
---|
1523 | ablas.cmatrixlefttrsm(n1, n2, ref a, offs, offs, isupper, false, 0, ref a, offs, offs + n1);
|
---|
1524 | ablas.cmatrixrighttrsm(n1, n2, ref a, offs + n1, offs + n1, isupper, false, 0, ref a, offs, offs + n1);
|
---|
1525 | } else {
|
---|
1526 | for (i = 0; i <= n2 - 1; i++) {
|
---|
1527 | for (i_ = offs; i_ <= offs + n1 - 1; i_++) {
|
---|
1528 | a[offs + n1 + i, i_] = -1 * a[offs + n1 + i, i_];
|
---|
1529 | }
|
---|
1530 | }
|
---|
1531 | ablas.cmatrixrighttrsm(n2, n1, ref a, offs, offs, isupper, false, 0, ref a, offs + n1, offs);
|
---|
1532 | ablas.cmatrixlefttrsm(n2, n1, ref a, offs + n1, offs + n1, isupper, false, 0, ref a, offs + n1, offs);
|
---|
1533 | }
|
---|
1534 |
|
---|
1535 | //
|
---|
1536 | // invert first diagonal block
|
---|
1537 | //
|
---|
1538 | hpdmatrixcholeskyinverserec(ref a, offs, n1, isupper, ref tmp);
|
---|
1539 |
|
---|
1540 | //
|
---|
1541 | // update first diagonal block with off-diagonal block,
|
---|
1542 | // update off-diagonal block
|
---|
1543 | //
|
---|
1544 | if (isupper) {
|
---|
1545 | ablas.cmatrixsyrk(n1, n2, 1.0, ref a, offs, offs + n1, 0, 1.0, ref a, offs, offs, isupper);
|
---|
1546 | ablas.cmatrixrighttrsm(n1, n2, ref a, offs + n1, offs + n1, isupper, false, 2, ref a, offs, offs + n1);
|
---|
1547 | } else {
|
---|
1548 | ablas.cmatrixsyrk(n1, n2, 1.0, ref a, offs + n1, offs, 2, 1.0, ref a, offs, offs, isupper);
|
---|
1549 | ablas.cmatrixlefttrsm(n2, n1, ref a, offs + n1, offs + n1, isupper, false, 2, ref a, offs + n1, offs);
|
---|
1550 | }
|
---|
1551 |
|
---|
1552 | //
|
---|
1553 | // invert second diagonal block
|
---|
1554 | //
|
---|
1555 | hpdmatrixcholeskyinverserec(ref a, offs + n1, n2, isupper, ref tmp);
|
---|
1556 | }
|
---|
1557 | }
|
---|
1558 | }
|
---|