1 | /*************************************************************************
|
---|
2 | Copyright (c) 2005-2007, Sergey Bochkanov (ALGLIB project).
|
---|
3 |
|
---|
4 | >>> SOURCE LICENSE >>>
|
---|
5 | This program is free software; you can redistribute it and/or modify
|
---|
6 | it under the terms of the GNU General Public License as published by
|
---|
7 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
8 | License, or (at your option) any later version.
|
---|
9 |
|
---|
10 | This program is distributed in the hope that it will be useful,
|
---|
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
13 | GNU General Public License for more details.
|
---|
14 |
|
---|
15 | A copy of the GNU General Public License is available at
|
---|
16 | http://www.fsf.org/licensing/licenses
|
---|
17 |
|
---|
18 | >>> END OF LICENSE >>>
|
---|
19 | *************************************************************************/
|
---|
20 |
|
---|
21 |
|
---|
22 | namespace alglib {
|
---|
23 | public class matdet {
|
---|
24 | /*************************************************************************
|
---|
25 | Determinant calculation of the matrix given by its LU decomposition.
|
---|
26 |
|
---|
27 | Input parameters:
|
---|
28 | A - LU decomposition of the matrix (output of
|
---|
29 | RMatrixLU subroutine).
|
---|
30 | Pivots - table of permutations which were made during
|
---|
31 | the LU decomposition.
|
---|
32 | Output of RMatrixLU subroutine.
|
---|
33 | N - size of matrix A.
|
---|
34 |
|
---|
35 | Result: matrix determinant.
|
---|
36 |
|
---|
37 | -- ALGLIB --
|
---|
38 | Copyright 2005 by Bochkanov Sergey
|
---|
39 | *************************************************************************/
|
---|
40 | public static double rmatrixludet(ref double[,] a,
|
---|
41 | ref int[] pivots,
|
---|
42 | int n) {
|
---|
43 | double result = 0;
|
---|
44 | int i = 0;
|
---|
45 | int s = 0;
|
---|
46 |
|
---|
47 | result = 1;
|
---|
48 | s = 1;
|
---|
49 | for (i = 0; i <= n - 1; i++) {
|
---|
50 | result = result * a[i, i];
|
---|
51 | if (pivots[i] != i) {
|
---|
52 | s = -s;
|
---|
53 | }
|
---|
54 | }
|
---|
55 | result = result * s;
|
---|
56 | return result;
|
---|
57 | }
|
---|
58 |
|
---|
59 |
|
---|
60 | /*************************************************************************
|
---|
61 | Calculation of the determinant of a general matrix
|
---|
62 |
|
---|
63 | Input parameters:
|
---|
64 | A - matrix, array[0..N-1, 0..N-1]
|
---|
65 | N - size of matrix A.
|
---|
66 |
|
---|
67 | Result: determinant of matrix A.
|
---|
68 |
|
---|
69 | -- ALGLIB --
|
---|
70 | Copyright 2005 by Bochkanov Sergey
|
---|
71 | *************************************************************************/
|
---|
72 | public static double rmatrixdet(double[,] a,
|
---|
73 | int n) {
|
---|
74 | double result = 0;
|
---|
75 | int[] pivots = new int[0];
|
---|
76 |
|
---|
77 | a = (double[,])a.Clone();
|
---|
78 |
|
---|
79 | trfac.rmatrixlu(ref a, n, n, ref pivots);
|
---|
80 | result = rmatrixludet(ref a, ref pivots, n);
|
---|
81 | return result;
|
---|
82 | }
|
---|
83 |
|
---|
84 |
|
---|
85 | /*************************************************************************
|
---|
86 | Determinant calculation of the matrix given by its LU decomposition.
|
---|
87 |
|
---|
88 | Input parameters:
|
---|
89 | A - LU decomposition of the matrix (output of
|
---|
90 | RMatrixLU subroutine).
|
---|
91 | Pivots - table of permutations which were made during
|
---|
92 | the LU decomposition.
|
---|
93 | Output of RMatrixLU subroutine.
|
---|
94 | N - size of matrix A.
|
---|
95 |
|
---|
96 | Result: matrix determinant.
|
---|
97 |
|
---|
98 | -- ALGLIB --
|
---|
99 | Copyright 2005 by Bochkanov Sergey
|
---|
100 | *************************************************************************/
|
---|
101 | public static AP.Complex cmatrixludet(ref AP.Complex[,] a,
|
---|
102 | ref int[] pivots,
|
---|
103 | int n) {
|
---|
104 | AP.Complex result = 0;
|
---|
105 | int i = 0;
|
---|
106 | int s = 0;
|
---|
107 |
|
---|
108 | result = 1;
|
---|
109 | s = 1;
|
---|
110 | for (i = 0; i <= n - 1; i++) {
|
---|
111 | result = result * a[i, i];
|
---|
112 | if (pivots[i] != i) {
|
---|
113 | s = -s;
|
---|
114 | }
|
---|
115 | }
|
---|
116 | result = result * s;
|
---|
117 | return result;
|
---|
118 | }
|
---|
119 |
|
---|
120 |
|
---|
121 | /*************************************************************************
|
---|
122 | Calculation of the determinant of a general matrix
|
---|
123 |
|
---|
124 | Input parameters:
|
---|
125 | A - matrix, array[0..N-1, 0..N-1]
|
---|
126 | N - size of matrix A.
|
---|
127 |
|
---|
128 | Result: determinant of matrix A.
|
---|
129 |
|
---|
130 | -- ALGLIB --
|
---|
131 | Copyright 2005 by Bochkanov Sergey
|
---|
132 | *************************************************************************/
|
---|
133 | public static AP.Complex cmatrixdet(AP.Complex[,] a,
|
---|
134 | int n) {
|
---|
135 | AP.Complex result = 0;
|
---|
136 | int[] pivots = new int[0];
|
---|
137 |
|
---|
138 | a = (AP.Complex[,])a.Clone();
|
---|
139 |
|
---|
140 | trfac.cmatrixlu(ref a, n, n, ref pivots);
|
---|
141 | result = cmatrixludet(ref a, ref pivots, n);
|
---|
142 | return result;
|
---|
143 | }
|
---|
144 |
|
---|
145 |
|
---|
146 | /*************************************************************************
|
---|
147 | Determinant calculation of the matrix given by the Cholesky decomposition.
|
---|
148 |
|
---|
149 | Input parameters:
|
---|
150 | A - Cholesky decomposition,
|
---|
151 | output of SMatrixCholesky subroutine.
|
---|
152 | N - size of matrix A.
|
---|
153 |
|
---|
154 | As the determinant is equal to the product of squares of diagonal elements,
|
---|
155 | its not necessary to specify which triangle - lower or upper - the matrix
|
---|
156 | is stored in.
|
---|
157 |
|
---|
158 | Result:
|
---|
159 | matrix determinant.
|
---|
160 |
|
---|
161 | -- ALGLIB --
|
---|
162 | Copyright 2005-2008 by Bochkanov Sergey
|
---|
163 | *************************************************************************/
|
---|
164 | public static double spdmatrixcholeskydet(ref double[,] a,
|
---|
165 | int n) {
|
---|
166 | double result = 0;
|
---|
167 | int i = 0;
|
---|
168 |
|
---|
169 | result = 1;
|
---|
170 | for (i = 0; i <= n - 1; i++) {
|
---|
171 | result = result * AP.Math.Sqr(a[i, i]);
|
---|
172 | }
|
---|
173 | return result;
|
---|
174 | }
|
---|
175 |
|
---|
176 |
|
---|
177 | /*************************************************************************
|
---|
178 | Determinant calculation of the symmetric positive definite matrix.
|
---|
179 |
|
---|
180 | Input parameters:
|
---|
181 | A - matrix. Array with elements [0..N-1, 0..N-1].
|
---|
182 | N - size of matrix A.
|
---|
183 | IsUpper - if IsUpper = True, then the symmetric matrix A is given by
|
---|
184 | its upper triangle, and the lower triangle isnt used by
|
---|
185 | subroutine. Similarly, if IsUpper = False, then A is given
|
---|
186 | by its lower triangle.
|
---|
187 |
|
---|
188 | Result:
|
---|
189 | determinant of matrix A.
|
---|
190 | If matrix A is not positive definite, then subroutine returns -1.
|
---|
191 |
|
---|
192 | -- ALGLIB --
|
---|
193 | Copyright 2005-2008 by Bochkanov Sergey
|
---|
194 | *************************************************************************/
|
---|
195 | public static double spdmatrixdet(double[,] a,
|
---|
196 | int n,
|
---|
197 | bool isupper) {
|
---|
198 | double result = 0;
|
---|
199 |
|
---|
200 | a = (double[,])a.Clone();
|
---|
201 |
|
---|
202 | if (!trfac.spdmatrixcholesky(ref a, n, isupper)) {
|
---|
203 | result = -1;
|
---|
204 | } else {
|
---|
205 | result = spdmatrixcholeskydet(ref a, n);
|
---|
206 | }
|
---|
207 | return result;
|
---|
208 | }
|
---|
209 | }
|
---|
210 | }
|
---|