1 | /*************************************************************************
|
---|
2 | Copyright (c) 1992-2007 The University of Tennessee. All rights reserved.
|
---|
3 |
|
---|
4 | Contributors:
|
---|
5 | * Sergey Bochkanov (ALGLIB project). Translation from FORTRAN to
|
---|
6 | pseudocode.
|
---|
7 |
|
---|
8 | See subroutines comments for additional copyrights.
|
---|
9 |
|
---|
10 | >>> SOURCE LICENSE >>>
|
---|
11 | This program is free software; you can redistribute it and/or modify
|
---|
12 | it under the terms of the GNU General Public License as published by
|
---|
13 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
14 | License, or (at your option) any later version.
|
---|
15 |
|
---|
16 | This program is distributed in the hope that it will be useful,
|
---|
17 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
18 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
19 | GNU General Public License for more details.
|
---|
20 |
|
---|
21 | A copy of the GNU General Public License is available at
|
---|
22 | http://www.fsf.org/licensing/licenses
|
---|
23 |
|
---|
24 | >>> END OF LICENSE >>>
|
---|
25 | *************************************************************************/
|
---|
26 |
|
---|
27 |
|
---|
28 | namespace alglib {
|
---|
29 | public class hblas {
|
---|
30 | public static void hermitianmatrixvectormultiply(ref AP.Complex[,] a,
|
---|
31 | bool isupper,
|
---|
32 | int i1,
|
---|
33 | int i2,
|
---|
34 | ref AP.Complex[] x,
|
---|
35 | AP.Complex alpha,
|
---|
36 | ref AP.Complex[] y) {
|
---|
37 | int i = 0;
|
---|
38 | int ba1 = 0;
|
---|
39 | int ba2 = 0;
|
---|
40 | int by1 = 0;
|
---|
41 | int by2 = 0;
|
---|
42 | int bx1 = 0;
|
---|
43 | int bx2 = 0;
|
---|
44 | int n = 0;
|
---|
45 | AP.Complex v = 0;
|
---|
46 | int i_ = 0;
|
---|
47 | int i1_ = 0;
|
---|
48 |
|
---|
49 | n = i2 - i1 + 1;
|
---|
50 | if (n <= 0) {
|
---|
51 | return;
|
---|
52 | }
|
---|
53 |
|
---|
54 | //
|
---|
55 | // Let A = L + D + U, where
|
---|
56 | // L is strictly lower triangular (main diagonal is zero)
|
---|
57 | // D is diagonal
|
---|
58 | // U is strictly upper triangular (main diagonal is zero)
|
---|
59 | //
|
---|
60 | // A*x = L*x + D*x + U*x
|
---|
61 | //
|
---|
62 | // Calculate D*x first
|
---|
63 | //
|
---|
64 | for (i = i1; i <= i2; i++) {
|
---|
65 | y[i - i1 + 1] = a[i, i] * x[i - i1 + 1];
|
---|
66 | }
|
---|
67 |
|
---|
68 | //
|
---|
69 | // Add L*x + U*x
|
---|
70 | //
|
---|
71 | if (isupper) {
|
---|
72 | for (i = i1; i <= i2 - 1; i++) {
|
---|
73 |
|
---|
74 | //
|
---|
75 | // Add L*x to the result
|
---|
76 | //
|
---|
77 | v = x[i - i1 + 1];
|
---|
78 | by1 = i - i1 + 2;
|
---|
79 | by2 = n;
|
---|
80 | ba1 = i + 1;
|
---|
81 | ba2 = i2;
|
---|
82 | i1_ = (ba1) - (by1);
|
---|
83 | for (i_ = by1; i_ <= by2; i_++) {
|
---|
84 | y[i_] = y[i_] + v * AP.Math.Conj(a[i, i_ + i1_]);
|
---|
85 | }
|
---|
86 |
|
---|
87 | //
|
---|
88 | // Add U*x to the result
|
---|
89 | //
|
---|
90 | bx1 = i - i1 + 2;
|
---|
91 | bx2 = n;
|
---|
92 | ba1 = i + 1;
|
---|
93 | ba2 = i2;
|
---|
94 | i1_ = (ba1) - (bx1);
|
---|
95 | v = 0.0;
|
---|
96 | for (i_ = bx1; i_ <= bx2; i_++) {
|
---|
97 | v += x[i_] * a[i, i_ + i1_];
|
---|
98 | }
|
---|
99 | y[i - i1 + 1] = y[i - i1 + 1] + v;
|
---|
100 | }
|
---|
101 | } else {
|
---|
102 | for (i = i1 + 1; i <= i2; i++) {
|
---|
103 |
|
---|
104 | //
|
---|
105 | // Add L*x to the result
|
---|
106 | //
|
---|
107 | bx1 = 1;
|
---|
108 | bx2 = i - i1;
|
---|
109 | ba1 = i1;
|
---|
110 | ba2 = i - 1;
|
---|
111 | i1_ = (ba1) - (bx1);
|
---|
112 | v = 0.0;
|
---|
113 | for (i_ = bx1; i_ <= bx2; i_++) {
|
---|
114 | v += x[i_] * a[i, i_ + i1_];
|
---|
115 | }
|
---|
116 | y[i - i1 + 1] = y[i - i1 + 1] + v;
|
---|
117 |
|
---|
118 | //
|
---|
119 | // Add U*x to the result
|
---|
120 | //
|
---|
121 | v = x[i - i1 + 1];
|
---|
122 | by1 = 1;
|
---|
123 | by2 = i - i1;
|
---|
124 | ba1 = i1;
|
---|
125 | ba2 = i - 1;
|
---|
126 | i1_ = (ba1) - (by1);
|
---|
127 | for (i_ = by1; i_ <= by2; i_++) {
|
---|
128 | y[i_] = y[i_] + v * AP.Math.Conj(a[i, i_ + i1_]);
|
---|
129 | }
|
---|
130 | }
|
---|
131 | }
|
---|
132 | for (i_ = 1; i_ <= n; i_++) {
|
---|
133 | y[i_] = alpha * y[i_];
|
---|
134 | }
|
---|
135 | }
|
---|
136 |
|
---|
137 |
|
---|
138 | public static void hermitianrank2update(ref AP.Complex[,] a,
|
---|
139 | bool isupper,
|
---|
140 | int i1,
|
---|
141 | int i2,
|
---|
142 | ref AP.Complex[] x,
|
---|
143 | ref AP.Complex[] y,
|
---|
144 | ref AP.Complex[] t,
|
---|
145 | AP.Complex alpha) {
|
---|
146 | int i = 0;
|
---|
147 | int tp1 = 0;
|
---|
148 | int tp2 = 0;
|
---|
149 | AP.Complex v = 0;
|
---|
150 | int i_ = 0;
|
---|
151 | int i1_ = 0;
|
---|
152 |
|
---|
153 | if (isupper) {
|
---|
154 | for (i = i1; i <= i2; i++) {
|
---|
155 | tp1 = i + 1 - i1;
|
---|
156 | tp2 = i2 - i1 + 1;
|
---|
157 | v = alpha * x[i + 1 - i1];
|
---|
158 | for (i_ = tp1; i_ <= tp2; i_++) {
|
---|
159 | t[i_] = v * AP.Math.Conj(y[i_]);
|
---|
160 | }
|
---|
161 | v = AP.Math.Conj(alpha) * y[i + 1 - i1];
|
---|
162 | for (i_ = tp1; i_ <= tp2; i_++) {
|
---|
163 | t[i_] = t[i_] + v * AP.Math.Conj(x[i_]);
|
---|
164 | }
|
---|
165 | i1_ = (tp1) - (i);
|
---|
166 | for (i_ = i; i_ <= i2; i_++) {
|
---|
167 | a[i, i_] = a[i, i_] + t[i_ + i1_];
|
---|
168 | }
|
---|
169 | }
|
---|
170 | } else {
|
---|
171 | for (i = i1; i <= i2; i++) {
|
---|
172 | tp1 = 1;
|
---|
173 | tp2 = i + 1 - i1;
|
---|
174 | v = alpha * x[i + 1 - i1];
|
---|
175 | for (i_ = tp1; i_ <= tp2; i_++) {
|
---|
176 | t[i_] = v * AP.Math.Conj(y[i_]);
|
---|
177 | }
|
---|
178 | v = AP.Math.Conj(alpha) * y[i + 1 - i1];
|
---|
179 | for (i_ = tp1; i_ <= tp2; i_++) {
|
---|
180 | t[i_] = t[i_] + v * AP.Math.Conj(x[i_]);
|
---|
181 | }
|
---|
182 | i1_ = (tp1) - (i1);
|
---|
183 | for (i_ = i1; i_ <= i; i_++) {
|
---|
184 | a[i, i_] = a[i, i_] + t[i_ + i1_];
|
---|
185 | }
|
---|
186 | }
|
---|
187 | }
|
---|
188 | }
|
---|
189 | }
|
---|
190 | }
|
---|