Free cookie consent management tool by TermsFeed Policy Generator

source: branches/ParameterBinding/HeuristicLab.ExtLibs/HeuristicLab.ALGLIB/2.5.0/ALGLIB-2.5.0/fdistr.cs @ 10573

Last change on this file since 10573 was 4068, checked in by swagner, 14 years ago

Sorted usings and removed unused usings in entire solution (#1094)

File size: 6.5 KB
Line 
1/*************************************************************************
2Cephes Math Library Release 2.8:  June, 2000
3Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
4
5Contributors:
6    * Sergey Bochkanov (ALGLIB project). Translation from C to
7      pseudocode.
8
9See subroutines comments for additional copyrights.
10
11>>> SOURCE LICENSE >>>
12This program is free software; you can redistribute it and/or modify
13it under the terms of the GNU General Public License as published by
14the Free Software Foundation (www.fsf.org); either version 2 of the
15License, or (at your option) any later version.
16
17This program is distributed in the hope that it will be useful,
18but WITHOUT ANY WARRANTY; without even the implied warranty of
19MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20GNU General Public License for more details.
21
22A copy of the GNU General Public License is available at
23http://www.fsf.org/licensing/licenses
24
25>>> END OF LICENSE >>>
26*************************************************************************/
27
28
29namespace alglib {
30  public class fdistr {
31    /*************************************************************************
32    F distribution
33
34    Returns the area from zero to x under the F density
35    function (also known as Snedcor's density or the
36    variance ratio density).  This is the density
37    of x = (u1/df1)/(u2/df2), where u1 and u2 are random
38    variables having Chi square distributions with df1
39    and df2 degrees of freedom, respectively.
40    The incomplete beta integral is used, according to the
41    formula
42
43    P(x) = incbet( df1/2, df2/2, (df1*x/(df2 + df1*x) ).
44
45
46    The arguments a and b are greater than zero, and x is
47    nonnegative.
48
49    ACCURACY:
50
51    Tested at random points (a,b,x).
52
53                   x     a,b                     Relative error:
54    arithmetic  domain  domain     # trials      peak         rms
55       IEEE      0,1    0,100       100000      9.8e-15     1.7e-15
56       IEEE      1,5    0,100       100000      6.5e-15     3.5e-16
57       IEEE      0,1    1,10000     100000      2.2e-11     3.3e-12
58       IEEE      1,5    1,10000     100000      1.1e-11     1.7e-13
59
60    Cephes Math Library Release 2.8:  June, 2000
61    Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
62    *************************************************************************/
63    public static double fdistribution(int a,
64        int b,
65        double x) {
66      double result = 0;
67      double w = 0;
68
69      System.Diagnostics.Debug.Assert(a >= 1 & b >= 1 & (double)(x) >= (double)(0), "Domain error in FDistribution");
70      w = a * x;
71      w = w / (b + w);
72      result = ibetaf.incompletebeta(0.5 * a, 0.5 * b, w);
73      return result;
74    }
75
76
77    /*************************************************************************
78    Complemented F distribution
79
80    Returns the area from x to infinity under the F density
81    function (also known as Snedcor's density or the
82    variance ratio density).
83
84
85                         inf.
86                          -
87                 1       | |  a-1      b-1
88    1-P(x)  =  ------    |   t    (1-t)    dt
89               B(a,b)  | |
90                        -
91                         x
92
93
94    The incomplete beta integral is used, according to the
95    formula
96
97    P(x) = incbet( df2/2, df1/2, (df2/(df2 + df1*x) ).
98
99
100    ACCURACY:
101
102    Tested at random points (a,b,x) in the indicated intervals.
103                   x     a,b                     Relative error:
104    arithmetic  domain  domain     # trials      peak         rms
105       IEEE      0,1    1,100       100000      3.7e-14     5.9e-16
106       IEEE      1,5    1,100       100000      8.0e-15     1.6e-15
107       IEEE      0,1    1,10000     100000      1.8e-11     3.5e-13
108       IEEE      1,5    1,10000     100000      2.0e-11     3.0e-12
109
110    Cephes Math Library Release 2.8:  June, 2000
111    Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
112    *************************************************************************/
113    public static double fcdistribution(int a,
114        int b,
115        double x) {
116      double result = 0;
117      double w = 0;
118
119      System.Diagnostics.Debug.Assert(a >= 1 & b >= 1 & (double)(x) >= (double)(0), "Domain error in FCDistribution");
120      w = b / (b + a * x);
121      result = ibetaf.incompletebeta(0.5 * b, 0.5 * a, w);
122      return result;
123    }
124
125
126    /*************************************************************************
127    Inverse of complemented F distribution
128
129    Finds the F density argument x such that the integral
130    from x to infinity of the F density is equal to the
131    given probability p.
132
133    This is accomplished using the inverse beta integral
134    function and the relations
135
136         z = incbi( df2/2, df1/2, p )
137         x = df2 (1-z) / (df1 z).
138
139    Note: the following relations hold for the inverse of
140    the uncomplemented F distribution:
141
142         z = incbi( df1/2, df2/2, p )
143         x = df2 z / (df1 (1-z)).
144
145    ACCURACY:
146
147    Tested at random points (a,b,p).
148
149                 a,b                     Relative error:
150    arithmetic  domain     # trials      peak         rms
151     For p between .001 and 1:
152       IEEE     1,100       100000      8.3e-15     4.7e-16
153       IEEE     1,10000     100000      2.1e-11     1.4e-13
154     For p between 10^-6 and 10^-3:
155       IEEE     1,100        50000      1.3e-12     8.4e-15
156       IEEE     1,10000      50000      3.0e-12     4.8e-14
157
158    Cephes Math Library Release 2.8:  June, 2000
159    Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
160    *************************************************************************/
161    public static double invfdistribution(int a,
162        int b,
163        double y) {
164      double result = 0;
165      double w = 0;
166
167      System.Diagnostics.Debug.Assert(a >= 1 & b >= 1 & (double)(y) > (double)(0) & (double)(y) <= (double)(1), "Domain error in InvFDistribution");
168
169      //
170      // Compute probability for x = 0.5
171      //
172      w = ibetaf.incompletebeta(0.5 * b, 0.5 * a, 0.5);
173
174      //
175      // If that is greater than y, then the solution w < .5
176      // Otherwise, solve at 1-y to remove cancellation in (b - b*w)
177      //
178      if ((double)(w) > (double)(y) | (double)(y) < (double)(0.001)) {
179        w = ibetaf.invincompletebeta(0.5 * b, 0.5 * a, y);
180        result = (b - b * w) / (a * w);
181      } else {
182        w = ibetaf.invincompletebeta(0.5 * a, 0.5 * b, 1.0 - y);
183        result = b * w / (a * (1.0 - w));
184      }
185      return result;
186    }
187  }
188}
Note: See TracBrowser for help on using the repository browser.