1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using HeuristicLab.Common;
|
---|
24 | using HeuristicLab.Core;
|
---|
25 | using HeuristicLab.Data;
|
---|
26 | using HeuristicLab.Parameters;
|
---|
27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
28 |
|
---|
29 | namespace HeuristicLab.Encodings.RealVectorEncoding {
|
---|
30 | /// <summary>
|
---|
31 | /// Changes one position of a real vector by adding/substracting a value of the interval [(2^-15)*range;~2*range], where range is SearchIntervalFactor * (max - min).
|
---|
32 | /// Note that the interval is not uniformly sampled, but smaller values are sampled more often.
|
---|
33 | /// </summary>
|
---|
34 | /// <remarks>
|
---|
35 | /// It is implemented as described by Mühlenbein, H. and Schlierkamp-Voosen, D. 1993. Predictive Models for the Breeder Genetic Algorithm - I. Continuous Parameter Optimization. Evolutionary Computation, 1(1), pp. 25-49.<br/>
|
---|
36 | /// </remarks>
|
---|
37 | [Item("BreederGeneticAlgorithmManipulator", "It is implemented as described by Mühlenbein, H. and Schlierkamp-Voosen, D. 1993. Predictive Models for the Breeder Genetic Algorithm - I. Continuous Parameter Optimization. Evolutionary Computation, 1(1), pp. 25-49.")]
|
---|
38 | [StorableClass]
|
---|
39 | public class BreederGeneticAlgorithmManipulator : RealVectorManipulator {
|
---|
40 | private static readonly double[] powerOfTwo = new double[] { 1, 0.5, 0.25, 0.125, 0.0625, 0.03125, 0.015625, 0.0078125, 0.00390625, 0.001953125, 0.0009765625, 0.00048828125, 0.000244140625, 0.0001220703125, 0.00006103515625, 0.000030517578125 };
|
---|
41 | public ValueLookupParameter<DoubleValue> SearchIntervalFactorParameter {
|
---|
42 | get { return (ValueLookupParameter<DoubleValue>)Parameters["SearchIntervalFactor"]; }
|
---|
43 | }
|
---|
44 |
|
---|
45 | [StorableConstructor]
|
---|
46 | protected BreederGeneticAlgorithmManipulator(bool deserializing) : base(deserializing) { }
|
---|
47 | protected BreederGeneticAlgorithmManipulator(BreederGeneticAlgorithmManipulator original, Cloner cloner) : base(original, cloner) { }
|
---|
48 | /// <summary>
|
---|
49 | /// Initializes a new instance of <see cref="BreederGeneticAlgorithmManipulator"/> with two
|
---|
50 | /// parameters (<c>Bounds</c> and <c>SearchIntervalFactor</c>).
|
---|
51 | /// </summary>
|
---|
52 | public BreederGeneticAlgorithmManipulator()
|
---|
53 | : base() {
|
---|
54 | Parameters.Add(new ValueLookupParameter<DoubleValue>("SearchIntervalFactor", "The factor determining the size of the search interval, that will be added/removed to/from the allele selected for manipulation. E.g. a value of 0.1 means 10% of the range will be maximally added/removed.", new DoubleValue(0.1)));
|
---|
55 | }
|
---|
56 |
|
---|
57 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
58 | return new BreederGeneticAlgorithmManipulator(this, cloner);
|
---|
59 | }
|
---|
60 |
|
---|
61 | /// <summary>
|
---|
62 | /// Performs a breeder genetic algorithm manipulation on the given <paramref name="vector"/>.
|
---|
63 | /// </summary>
|
---|
64 | /// <param name="random">A random number generator.</param>
|
---|
65 | /// <param name="vector">The real vector to manipulate.</param>
|
---|
66 | /// <param name="bounds">The lower and upper bound (1st and 2nd column) of the positions in the vector. If there are less rows than dimensions, the rows are cycled.</param>
|
---|
67 | /// <param name="searchIntervalFactor">The factor determining the size of the search interval.</param>
|
---|
68 | public static void Apply(IRandom random, RealVector vector, DoubleMatrix bounds, DoubleValue searchIntervalFactor) {
|
---|
69 | int length = vector.Length;
|
---|
70 | double prob, value;
|
---|
71 | do {
|
---|
72 | value = Sigma(random);
|
---|
73 | } while (value == 0);
|
---|
74 |
|
---|
75 | prob = 1.0 / (double)length;
|
---|
76 | bool wasMutated = false;
|
---|
77 |
|
---|
78 | for (int i = 0; i < length; i++) {
|
---|
79 | if (random.NextDouble() < prob) {
|
---|
80 | double range = bounds[i % bounds.Rows, 1] - bounds[i % bounds.Rows, 0];
|
---|
81 | if (random.NextDouble() < 0.5) {
|
---|
82 | vector[i] = vector[i] + value * searchIntervalFactor.Value * range;
|
---|
83 | } else {
|
---|
84 | vector[i] = vector[i] - value * searchIntervalFactor.Value * range;
|
---|
85 | }
|
---|
86 | wasMutated = true;
|
---|
87 | }
|
---|
88 | }
|
---|
89 |
|
---|
90 | // make sure at least one gene was mutated
|
---|
91 | if (!wasMutated) {
|
---|
92 | int pos = random.Next(length);
|
---|
93 | double range = bounds[pos % bounds.Rows, 1] - bounds[pos % bounds.Rows, 0];
|
---|
94 | if (random.NextDouble() < 0.5) {
|
---|
95 | vector[pos] = vector[pos] + value * searchIntervalFactor.Value * range;
|
---|
96 | } else {
|
---|
97 | vector[pos] = vector[pos] - value * searchIntervalFactor.Value * range;
|
---|
98 | }
|
---|
99 | }
|
---|
100 | }
|
---|
101 |
|
---|
102 | private static double Sigma(IRandom random) {
|
---|
103 | double sigma = 0;
|
---|
104 | int limit = 16;
|
---|
105 |
|
---|
106 | for (int i = 0; i < limit; i++) {
|
---|
107 | if (random.Next(limit) == 15) {
|
---|
108 | // execute this statement with a probability of 1/16
|
---|
109 | sigma += powerOfTwo[i];
|
---|
110 | }
|
---|
111 | }
|
---|
112 |
|
---|
113 | return sigma;
|
---|
114 | }
|
---|
115 |
|
---|
116 | /// <summary>
|
---|
117 | /// Checks the parameters Bounds, and SearchIntervalFactor and forwards the call to <see cref="Apply(IRandom, RealVector, DoubleValue, DoubleValue, DoubleValue)"/>.
|
---|
118 | /// </summary>
|
---|
119 | /// <param name="random">A random number generator.</param>
|
---|
120 | /// <param name="realVector">The real vector to manipulate.</param>
|
---|
121 | protected override void Manipulate(IRandom random, RealVector realVector) {
|
---|
122 | if (BoundsParameter.ActualValue == null) throw new InvalidOperationException("BreederGeneticAlgorithmManipulator: Parameter " + BoundsParameter.ActualName + " could not be found.");
|
---|
123 | if (SearchIntervalFactorParameter.ActualValue == null) throw new InvalidOperationException("BreederGeneticAlgorithmManipulator: Paraemter " + SearchIntervalFactorParameter.ActualName + " could not be found.");
|
---|
124 | Apply(random, realVector, BoundsParameter.ActualValue, SearchIntervalFactorParameter.ActualValue);
|
---|
125 | }
|
---|
126 | }
|
---|
127 | }
|
---|