1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Data;
|
---|
27 | using HeuristicLab.Encodings.BinaryVectorEncoding;
|
---|
28 | using HeuristicLab.Optimization;
|
---|
29 | using HeuristicLab.Parameters;
|
---|
30 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
31 | using HeuristicLab.Random;
|
---|
32 |
|
---|
33 |
|
---|
34 | namespace HeuristicLab.Algorithms.ParameterlessPopulationPyramid {
|
---|
35 | [Item("Hill Climber", "Test algorithm.")]
|
---|
36 | [StorableClass]
|
---|
37 | [Creatable("Parameterless Population Pyramid")]
|
---|
38 | public class HillClimber : AlgorithmBase {
|
---|
39 | [Storable]
|
---|
40 | private IRandom random;
|
---|
41 |
|
---|
42 | private const string IterationsParameterName = "Iterations";
|
---|
43 |
|
---|
44 | public IFixedValueParameter<IntValue> IterationsParameter {
|
---|
45 | get { return (IFixedValueParameter<IntValue>)Parameters[IterationsParameterName]; }
|
---|
46 | }
|
---|
47 |
|
---|
48 | public int Iterations {
|
---|
49 | get { return IterationsParameter.Value.Value; }
|
---|
50 | set { IterationsParameter.Value.Value = value; }
|
---|
51 | }
|
---|
52 |
|
---|
53 | [StorableConstructor]
|
---|
54 | protected HillClimber(bool deserializing) : base(deserializing) { }
|
---|
55 | protected HillClimber(HillClimber original, Cloner cloner)
|
---|
56 | : base(original, cloner) {
|
---|
57 | }
|
---|
58 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
59 | return new HillClimber(this, cloner);
|
---|
60 | }
|
---|
61 |
|
---|
62 | public HillClimber()
|
---|
63 | : base() {
|
---|
64 | random = new MersenneTwister();
|
---|
65 | Parameters.Add(new FixedValueParameter<IntValue>(IterationsParameterName, "", new IntValue(100)));
|
---|
66 | }
|
---|
67 | protected override void Run() {
|
---|
68 | var BestQuality = new DoubleValue(double.NaN);
|
---|
69 | Results.Add(new Result("Best quality", BestQuality));
|
---|
70 | for (int iteration = 0; iteration < Iterations; iteration++) {
|
---|
71 | bool[] solution = new bool[Problem.Length];
|
---|
72 | for (int i = 0; i < solution.Length; i++) {
|
---|
73 | solution[i] = random.Next(2) == 1;
|
---|
74 | }
|
---|
75 |
|
---|
76 | var fitness = Problem.Evaluate(solution);
|
---|
77 |
|
---|
78 | fitness = ImproveToLocalOptimum(Problem, solution, fitness, random);
|
---|
79 | if (double.IsNaN(BestQuality.Value) || Problem.IsBetter(fitness, BestQuality.Value)) {
|
---|
80 | BestQuality.Value = fitness;
|
---|
81 | }
|
---|
82 | }
|
---|
83 | }
|
---|
84 | public static double ImproveToLocalOptimum(BinaryVectorProblem problem, bool[] solution, double fitness, IRandom rand) {
|
---|
85 | var tried = new HashSet<int>();
|
---|
86 | do {
|
---|
87 | var options = Enumerable.Range(0, solution.Length).Shuffle(rand);
|
---|
88 | foreach (var option in options) {
|
---|
89 | solution[option] = !solution[option];
|
---|
90 | double newFitness = problem.Evaluate(solution);
|
---|
91 | if (problem.IsBetter(newFitness, fitness)) {
|
---|
92 | fitness = newFitness;
|
---|
93 | tried.Clear();
|
---|
94 | } else {
|
---|
95 | solution[option] = !solution[option];
|
---|
96 | }
|
---|
97 | tried.Add(option);
|
---|
98 | }
|
---|
99 | } while (tried.Count != solution.Length);
|
---|
100 | return fitness;
|
---|
101 | }
|
---|
102 | }
|
---|
103 | }
|
---|