1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Data;
|
---|
27 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
28 | using HeuristicLab.Operators;
|
---|
29 | using HeuristicLab.Parameters;
|
---|
30 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
31 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
32 |
|
---|
33 | namespace HeuristicLab.Problems.DataAnalysis.Regression.Symbolic {
|
---|
34 | [Item("SimpleSymbolicRegressionEvaluator", "Evaluates a symbolic regression solution and outputs a matrix of target and estimated values.")]
|
---|
35 | [StorableClass]
|
---|
36 | public sealed class SimpleSymbolicRegressionEvaluator : SingleSuccessorOperator {
|
---|
37 | private const string SymbolicExpressionTreeInterpreterParameterName = "SymbolicExpressionTreeInterpreter";
|
---|
38 | private const string FunctionTreeParameterName = "FunctionTree";
|
---|
39 | private const string RegressionProblemDataParameterName = "RegressionProblemData";
|
---|
40 | private const string SamplesStartParameterName = "SamplesStart";
|
---|
41 | private const string SamplesEndParameterName = "SamplesEnd";
|
---|
42 | private const string ValuesParameterName = "Values";
|
---|
43 | private const string UpperEstimationLimitParameterName = "UpperEstimationLimit";
|
---|
44 | private const string LowerEstimationLimitParameterName = "LowerEstimationLimit";
|
---|
45 |
|
---|
46 | #region ISymbolicRegressionEvaluator Members
|
---|
47 | public ILookupParameter<ISymbolicExpressionTreeInterpreter> SymbolicExpressionTreeInterpreterParameter {
|
---|
48 | get { return (ILookupParameter<ISymbolicExpressionTreeInterpreter>)Parameters[SymbolicExpressionTreeInterpreterParameterName]; }
|
---|
49 | }
|
---|
50 |
|
---|
51 | public ILookupParameter<SymbolicExpressionTree> SymbolicExpressionTreeParameter {
|
---|
52 | get { return (ILookupParameter<SymbolicExpressionTree>)Parameters[FunctionTreeParameterName]; }
|
---|
53 | }
|
---|
54 |
|
---|
55 | public ILookupParameter<DataAnalysisProblemData> RegressionProblemDataParameter {
|
---|
56 | get { return (ILookupParameter<DataAnalysisProblemData>)Parameters[RegressionProblemDataParameterName]; }
|
---|
57 | }
|
---|
58 |
|
---|
59 | public IValueLookupParameter<IntValue> SamplesStartParameter {
|
---|
60 | get { return (IValueLookupParameter<IntValue>)Parameters[SamplesStartParameterName]; }
|
---|
61 | }
|
---|
62 |
|
---|
63 | public IValueLookupParameter<IntValue> SamplesEndParameter {
|
---|
64 | get { return (IValueLookupParameter<IntValue>)Parameters[SamplesEndParameterName]; }
|
---|
65 | }
|
---|
66 | public IValueLookupParameter<DoubleValue> UpperEstimationLimitParameter {
|
---|
67 | get { return (IValueLookupParameter<DoubleValue>)Parameters[UpperEstimationLimitParameterName]; }
|
---|
68 | }
|
---|
69 | public IValueLookupParameter<DoubleValue> LowerEstimationLimitParameter {
|
---|
70 | get { return (IValueLookupParameter<DoubleValue>)Parameters[LowerEstimationLimitParameterName]; }
|
---|
71 | }
|
---|
72 |
|
---|
73 | public ILookupParameter<DoubleMatrix> ValuesParameter {
|
---|
74 | get { return (ILookupParameter<DoubleMatrix>)Parameters[ValuesParameterName]; }
|
---|
75 | }
|
---|
76 |
|
---|
77 | #endregion
|
---|
78 | #region properties
|
---|
79 | public ISymbolicExpressionTreeInterpreter SymbolicExpressionTreeInterpreter {
|
---|
80 | get { return SymbolicExpressionTreeInterpreterParameter.ActualValue; }
|
---|
81 | }
|
---|
82 | public SymbolicExpressionTree SymbolicExpressionTree {
|
---|
83 | get { return SymbolicExpressionTreeParameter.ActualValue; }
|
---|
84 | }
|
---|
85 | public DataAnalysisProblemData RegressionProblemData {
|
---|
86 | get { return RegressionProblemDataParameter.ActualValue; }
|
---|
87 | }
|
---|
88 | public IntValue SamplesStart {
|
---|
89 | get { return SamplesStartParameter.ActualValue; }
|
---|
90 | }
|
---|
91 | public IntValue SamplesEnd {
|
---|
92 | get { return SamplesEndParameter.ActualValue; }
|
---|
93 | }
|
---|
94 | public DoubleValue UpperEstimationLimit {
|
---|
95 | get { return UpperEstimationLimitParameter.ActualValue; }
|
---|
96 | }
|
---|
97 | public DoubleValue LowerEstimationLimit {
|
---|
98 | get { return LowerEstimationLimitParameter.ActualValue; }
|
---|
99 | }
|
---|
100 |
|
---|
101 | #endregion
|
---|
102 |
|
---|
103 | [StorableConstructor]
|
---|
104 | private SimpleSymbolicRegressionEvaluator(bool deserializing) : base(deserializing) { }
|
---|
105 | private SimpleSymbolicRegressionEvaluator(SimpleSymbolicRegressionEvaluator original, Cloner cloner) : base(original, cloner) { }
|
---|
106 | public SimpleSymbolicRegressionEvaluator()
|
---|
107 | : base() {
|
---|
108 | Parameters.Add(new LookupParameter<ISymbolicExpressionTreeInterpreter>(SymbolicExpressionTreeInterpreterParameterName, "The interpreter that should be used to calculate the output values of the symbolic expression tree."));
|
---|
109 | Parameters.Add(new LookupParameter<SymbolicExpressionTree>(FunctionTreeParameterName, "The symbolic regression solution encoded as a symbolic expression tree."));
|
---|
110 | Parameters.Add(new LookupParameter<DataAnalysisProblemData>(RegressionProblemDataParameterName, "The problem data on which the symbolic regression solution should be evaluated."));
|
---|
111 | Parameters.Add(new ValueLookupParameter<IntValue>(SamplesStartParameterName, "The start index of the dataset partition on which the symbolic regression solution should be evaluated."));
|
---|
112 | Parameters.Add(new ValueLookupParameter<IntValue>(SamplesEndParameterName, "The end index of the dataset partition on which the symbolic regression solution should be evaluated."));
|
---|
113 | Parameters.Add(new ValueLookupParameter<DoubleValue>(UpperEstimationLimitParameterName, "The upper limit that should be used as cut off value for the output values of symbolic expression trees."));
|
---|
114 | Parameters.Add(new ValueLookupParameter<DoubleValue>(LowerEstimationLimitParameterName, "The lower limit that should be used as cut off value for the output values of symbolic expression trees."));
|
---|
115 | Parameters.Add(new LookupParameter<DoubleMatrix>(ValuesParameterName, "The matrix of target and estimated values as generated by the symbolic regression solution."));
|
---|
116 | }
|
---|
117 |
|
---|
118 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
119 | return new SimpleSymbolicRegressionEvaluator(this, cloner);
|
---|
120 | }
|
---|
121 |
|
---|
122 | public override IOperation Apply(IExecutionContext context) {
|
---|
123 | Dataset dataset = RegressionProblemData.Dataset;
|
---|
124 | string targetVariable = RegressionProblemData.TargetVariable.Value;
|
---|
125 | ISymbolicExpressionTreeInterpreter interpreter = SymbolicExpressionTreeInterpreter;
|
---|
126 | SymbolicExpressionTree tree = SymbolicExpressionTree;
|
---|
127 | int start = SamplesStart.Value;
|
---|
128 | int end = SamplesEnd.Value;
|
---|
129 | double lowerEstimationLimit = LowerEstimationLimit != null ? LowerEstimationLimit.Value : double.NegativeInfinity;
|
---|
130 | double upperEstimationLimit = UpperEstimationLimit != null ? UpperEstimationLimit.Value : double.PositiveInfinity;
|
---|
131 | int targetVariableIndex = dataset.GetVariableIndex(targetVariable);
|
---|
132 | var estimatedValues = from x in interpreter.GetSymbolicExpressionTreeValues(tree, dataset, Enumerable.Range(start, end - start))
|
---|
133 | let boundedX = Math.Min(upperEstimationLimit, Math.Max(lowerEstimationLimit, x))
|
---|
134 | select double.IsNaN(boundedX) ? upperEstimationLimit : boundedX;
|
---|
135 | var originalValues = from row in Enumerable.Range(start, end - start) select dataset[row, targetVariableIndex];
|
---|
136 | // NB: indexes must match SimpleEvaluator.ORIGINAL_INDEX and SimpleEvaluator.ESTIMATED_INDEX
|
---|
137 | ValuesParameter.ActualValue = new DoubleMatrix(MatrixExtensions<double>.Create(originalValues.ToArray(), estimatedValues.ToArray()));
|
---|
138 | return base.Apply(context);
|
---|
139 | }
|
---|
140 | }
|
---|
141 | }
|
---|