Free cookie consent management tool by TermsFeed Policy Generator

source: branches/PTSP/HeuristicLab.Problems.PTSP/3.3/EstimatedPTSP.cs @ 14000

Last change on this file since 14000 was 13470, checked in by abeham, 9 years ago

#2221:

  • implemented review comments
    • hid rng as private class, implemented djb2 hash function (hash function implementation may also change)
    • added missing probabilities
    • base class for instance providers
    • prebuild event events
    • build platforms
    • unit test will be removed on trunk integration
    • corrected assembly file version
    • distance calculator parameter was not hidden, can be changed by user, updates distance matrix
    • fixed performance problems (ouch!) also for estimated ptsp (inlined GetDistance method)
  • added moves (full evaluation) for analytical tsp
  • added local improvement operators for analytical ptsp
  • added recalculation of distance matrix when parameters change
  • still lots of other changes
File size: 9.8 KB
RevLine 
[13412]1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Linq;
24using HeuristicLab.Common;
[12191]25using HeuristicLab.Core;
[13412]26using HeuristicLab.Data;
27using HeuristicLab.Encodings.PermutationEncoding;
[13470]28using HeuristicLab.Optimization;
[13412]29using HeuristicLab.Parameters;
[12191]30using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
31using HeuristicLab.Problems.Instances;
[12261]32using HeuristicLab.Random;
[12191]33
34namespace HeuristicLab.Problems.PTSP {
[13412]35  [Item("Estimated Probabilistic Traveling Salesman Problem (PTSP)", "Represents a probabilistic traveling salesman problem where the expected tour length is estimated by averaging over the length of tours on a number of, so called, realizations.")]
36  [Creatable(CreatableAttribute.Categories.CombinatorialProblems)]
[12191]37  [StorableClass]
[13412]38  public sealed class EstimatedProbabilisticTravelingSalesmanProblem : ProbabilisticTravelingSalesmanProblem {
[12191]39
[12306]40    #region Parameter Properties
[13412]41    public IValueParameter<ItemList<BoolArray>> RealizationsParameter {
42      get { return (IValueParameter<ItemList<BoolArray>>)Parameters["Realizations"]; }
[12306]43    }
[13412]44    public IFixedValueParameter<IntValue> RealizationsSizeParameter {
45      get { return (IFixedValueParameter<IntValue>)Parameters["RealizationsSize"]; }
[12387]46    }
[12306]47    #endregion
48
49    #region Properties
[13412]50    public ItemList<BoolArray> Realizations {
[12306]51      get { return RealizationsParameter.Value; }
52      set { RealizationsParameter.Value = value; }
53    }
[12387]54
[13412]55    public int RealizationsSize {
56      get { return RealizationsSizeParameter.Value.Value; }
57      set { RealizationsSizeParameter.Value.Value = value; }
[12387]58    }
[12306]59    #endregion
60
[12191]61    [StorableConstructor]
62    private EstimatedProbabilisticTravelingSalesmanProblem(bool deserializing) : base(deserializing) { }
63    private EstimatedProbabilisticTravelingSalesmanProblem(EstimatedProbabilisticTravelingSalesmanProblem original, Cloner cloner)
64      : base(original, cloner) {
[12387]65      RegisterEventHandlers();
[12191]66    }
[12387]67    public EstimatedProbabilisticTravelingSalesmanProblem() {
[13412]68      Parameters.Add(new FixedValueParameter<IntValue>("RealizationsSize", "Size of the sample for the estimation-based evaluation", new IntValue(100)));
69      Parameters.Add(new ValueParameter<ItemList<BoolArray>>("Realizations", "The list of samples drawn from all possible stochastic instances.", new ItemList<BoolArray>()));
[12799]70
71      Operators.Add(new BestPTSPSolutionAnalyzer());
72
[13412]73      Operators.Add(new PTSPEstimatedInversionMoveEvaluator());
74      Operators.Add(new PTSPEstimatedInsertionMoveEvaluator());
[13470]75      Operators.Add(new PTSPEstimatedInversionLocalImprovement());
76      Operators.Add(new PTSPEstimatedInsertionLocalImprovement());
77      Operators.Add(new PTSPEstimatedTwoPointFiveLocalImprovement());
[12191]78
[13412]79      Operators.Add(new ExhaustiveTwoPointFiveMoveGenerator());
80      Operators.Add(new StochasticTwoPointFiveMultiMoveGenerator());
81      Operators.Add(new StochasticTwoPointFiveSingleMoveGenerator());
[12387]82      Operators.Add(new TwoPointFiveMoveMaker());
[13470]83      Operators.Add(new PTSPEstimatedTwoPointFiveMoveEvaluator());
[12387]84
[13470]85      Operators.RemoveAll(x => x is SingleObjectiveMoveGenerator);
86      Operators.RemoveAll(x => x is SingleObjectiveMoveMaker);
87      Operators.RemoveAll(x => x is SingleObjectiveMoveEvaluator);
88
[12387]89      Encoding.ConfigureOperators(Operators.OfType<IOperator>());
[13412]90      foreach (var twopointfiveMoveOperator in Operators.OfType<ITwoPointFiveMoveOperator>()) {
[12387]91        twopointfiveMoveOperator.TwoPointFiveMoveParameter.ActualName = "Permutation.TwoPointFiveMove";
92      }
[13412]93
[13470]94      UpdateRealizations();
[12387]95      RegisterEventHandlers();
96    }
97
[12191]98    public override IDeepCloneable Clone(Cloner cloner) {
99      return new EstimatedProbabilisticTravelingSalesmanProblem(this, cloner);
100    }
101
[13412]102    [StorableHook(HookType.AfterDeserialization)]
103    private void AfterDeserialization() {
104      RegisterEventHandlers();
105    }
106
107    private void RegisterEventHandlers() {
108      RealizationsSizeParameter.Value.ValueChanged += RealizationsSizeParameter_ValueChanged;
109    }
110
111    private void RealizationsSizeParameter_ValueChanged(object sender, EventArgs e) {
112      UpdateRealizations();
113    }
114
115    public override double Evaluate(Permutation tour, IRandom random) {
[13470]116      // abeham: Cache parameters in local variables for performance reasons
117      var realizations = Realizations;
118      var realizationsSize = RealizationsSize;
119      var useDistanceMatrix = UseDistanceMatrix;
120      var distanceMatrix = DistanceMatrix;
121      var distanceCalculator = DistanceCalculator;
122      var coordinates = Coordinates;
123
124      // Estimation-based evaluation, here without calculating variance for faster evaluation
[13412]125      var estimatedSum = 0.0;
[13470]126      for (var i = 0; i < realizations.Count; i++) {
[12261]127        int singleRealization = -1, firstNode = -1;
[13470]128        for (var j = 0; j < realizations[i].Length; j++) {
129          if (realizations[i][tour[j]]) {
[12191]130            if (singleRealization != -1) {
[13470]131              estimatedSum += useDistanceMatrix ? distanceMatrix[singleRealization, tour[j]] : distanceCalculator.Calculate(singleRealization, tour[j], coordinates);
[12261]132            } else {
[13412]133              firstNode = tour[j];
[12191]134            }
[13412]135            singleRealization = tour[j];
[12191]136          }
137        }
[12261]138        if (singleRealization != -1) {
[13470]139          estimatedSum += useDistanceMatrix ? distanceMatrix[singleRealization, firstNode] : distanceCalculator.Calculate(singleRealization, firstNode, coordinates);
[12261]140        }
[12191]141      }
[13470]142      return estimatedSum / realizationsSize;
[12191]143    }
144
[13412]145    /// <summary>
146    /// An evaluate method that can be used if mean as well as variance should be calculated
147    /// </summary>
148    /// <param name="tour">The tour between all cities.</param>
149    /// <param name="distanceMatrix">The distances between the cities.</param>
150    /// <param name="realizations">A sample of realizations of the stochastic instance</param>
[13470]151    /// <param name="variance">The estimated variance will be returned in addition to the mean.</param>
[13412]152    /// <returns>A vector with length two containing mean and variance.</returns>
[13470]153    public static double Evaluate(Permutation tour, DistanceMatrix distanceMatrix, ItemList<BoolArray> realizations, out double variance) {
154      return Evaluate(tour, (a, b) => distanceMatrix[a, b], realizations, out variance);
155    }
156
157    /// <summary>
158    /// An evaluate method that can be used if mean as well as variance should be calculated
159    /// </summary>
160    /// <param name="tour">The tour between all cities.</param>
161    /// <param name="distance">A func that accepts the index of two cities and returns the distance as a double.</param>
162    /// <param name="realizations">A sample of realizations of the stochastic instance</param>
163    /// <param name="variance">The estimated variance will be returned in addition to the mean.</param>
164    /// <returns>A vector with length two containing mean and variance.</returns>
165    public static double Evaluate(Permutation tour, Func<int, int, double> distance, ItemList<BoolArray> realizations, out double variance) {
[12261]166      // Estimation-based evaluation
[13412]167      var estimatedSum = 0.0;
168      var partialSums = new double[realizations.Count];
169      for (var i = 0; i < realizations.Count; i++) {
[12261]170        partialSums[i] = 0;
171        int singleRealization = -1, firstNode = -1;
[13412]172        for (var j = 0; j < realizations[i].Length; j++) {
173          if (realizations[i][tour[j]]) {
[12261]174            if (singleRealization != -1) {
[13470]175              partialSums[i] += distance(singleRealization, tour[j]);
[12261]176            } else {
[13412]177              firstNode = tour[j];
[12261]178            }
[13412]179            singleRealization = tour[j];
[12261]180          }
181        }
182        if (singleRealization != -1) {
[13470]183          partialSums[i] += distance(singleRealization, firstNode);
[12261]184        }
185        estimatedSum += partialSums[i];
186      }
[13412]187      var mean = estimatedSum / realizations.Count;
[13470]188      variance = 0.0;
[13412]189      for (var i = 0; i < realizations.Count; i++) {
[12261]190        variance += Math.Pow((partialSums[i] - mean), 2);
191      }
192      variance = variance / realizations.Count;
[13470]193      return mean;
[12261]194    }
195
[13470]196    public override void Load(PTSPData data) {
197      base.Load(data);
198      UpdateRealizations();
199
200      foreach (var op in Operators.OfType<IEstimatedPTSPOperator>()) {
201        op.RealizationsParameter.ActualName = RealizationsParameter.Name;
202      }
[12387]203    }
[12272]204
[12387]205    private void UpdateRealizations() {
[13412]206      var realizations = new ItemList<BoolArray>(RealizationsSize);
207      var rand = new MersenneTwister();
208      for (var i = 0; i < RealizationsSize; i++) {
209        var newRealization = new BoolArray(Probabilities.Length);
210        var countOnes = 0;
[13470]211        do {
[12261]212          countOnes = 0;
[13412]213          for (var j = 0; j < Probabilities.Length; j++) {
214            newRealization[j] = Probabilities[j] < rand.NextDouble();
215            if (newRealization[j]) countOnes++;
[12219]216          }
[13470]217          // only generate realizations with at least 4 cities visited
218        } while (countOnes < 4 && Probabilities.Length > 3);
219        realizations.Add(newRealization);
[12219]220      }
[13412]221      Realizations = realizations;
[12387]222    }
[12191]223  }
224}
Note: See TracBrowser for help on using the repository browser.