1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using HeuristicLab.Common;
|
---|
23 | using HeuristicLab.Core;
|
---|
24 | using HeuristicLab.Data;
|
---|
25 | using HeuristicLab.Encodings.PermutationEncoding;
|
---|
26 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
27 |
|
---|
28 | namespace HeuristicLab.Problems.PTSP {
|
---|
29 | [Item("Analytical Probabilistic Traveling Salesman Problem (PTSP)", "Represents a probabilistic traveling salesman problem where the expected tour length is calculated exactly.")]
|
---|
30 | [Creatable(CreatableAttribute.Categories.CombinatorialProblems)]
|
---|
31 | [StorableClass]
|
---|
32 | public sealed class AnalyticalProbabilisticTravelingSalesmanProblem : ProbabilisticTravelingSalesmanProblem {
|
---|
33 |
|
---|
34 | [StorableConstructor]
|
---|
35 | private AnalyticalProbabilisticTravelingSalesmanProblem(bool deserializing) : base(deserializing) { }
|
---|
36 | private AnalyticalProbabilisticTravelingSalesmanProblem(AnalyticalProbabilisticTravelingSalesmanProblem original, Cloner cloner) : base(original, cloner) { }
|
---|
37 | public AnalyticalProbabilisticTravelingSalesmanProblem() {
|
---|
38 | Operators.Add(new BestPTSPSolutionAnalyzer());
|
---|
39 | }
|
---|
40 |
|
---|
41 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
42 | return new AnalyticalProbabilisticTravelingSalesmanProblem(this, cloner);
|
---|
43 | }
|
---|
44 |
|
---|
45 | public override double Evaluate(Permutation tour, IRandom random) {
|
---|
46 | // Analytical evaluation
|
---|
47 | double firstSum = 0;
|
---|
48 | for (int i = 0; i < tour.Length - 1; i++) {
|
---|
49 | for (int j = i + 1; j < tour.Length - 1; j++) {
|
---|
50 | double sum1 = DistanceMatrix[tour[i], tour[j]] * Probabilities[tour[i]] * Probabilities[tour[j]];
|
---|
51 | for (int k = i + 1; k < j; k++) {
|
---|
52 | sum1 = sum1 * (1 - Probabilities[tour[k]]);
|
---|
53 | }
|
---|
54 | firstSum += sum1;
|
---|
55 | }
|
---|
56 | }
|
---|
57 | double secondSum = 0;
|
---|
58 | for (int j = 0; j < tour.Length - 1; j++) {
|
---|
59 | for (int i = 0; i < j; i++) {
|
---|
60 | double sum2 = DistanceMatrix[tour[j], tour[i]] * Probabilities[tour[i]] * Probabilities[tour[j]];
|
---|
61 | for (int k = j + 1; k < tour.Length - 1; k++) {
|
---|
62 | sum2 = sum2 * (1 - Probabilities[tour[k]]);
|
---|
63 | }
|
---|
64 | for (int k = 1; k < i; k++) {
|
---|
65 | sum2 = sum2 * (1 - Probabilities[tour[k]]);
|
---|
66 | }
|
---|
67 | secondSum += sum2;
|
---|
68 | }
|
---|
69 | }
|
---|
70 | return firstSum + secondSum;
|
---|
71 | }
|
---|
72 |
|
---|
73 | public static double Evaluate(Permutation tour, DistanceMatrix distanceMatrix, DoubleArray probabilities) {
|
---|
74 | // Analytical evaluation
|
---|
75 | var firstSum = 0.0;
|
---|
76 | for (var i = 0; i < tour.Length; i++) {
|
---|
77 | for (var j = i + 1; j < tour.Length; j++) {
|
---|
78 | var sum1 = distanceMatrix[tour[i], tour[j]] * probabilities[tour[i]] * probabilities[tour[j]];
|
---|
79 | for (var k = i + 1; k < j; k++) {
|
---|
80 | sum1 = sum1 * (1 - probabilities[tour[k]]);
|
---|
81 | }
|
---|
82 | firstSum += sum1;
|
---|
83 | }
|
---|
84 | }
|
---|
85 | var secondSum = 0.0;
|
---|
86 | for (var j = 0; j < tour.Length; j++) {
|
---|
87 | for (var i = 0; i < j; i++) {
|
---|
88 | var sum2 = distanceMatrix[tour[j], tour[i]] * probabilities[tour[i]] * probabilities[tour[j]];
|
---|
89 | for (var k = j + 1; k < tour.Length; k++) {
|
---|
90 | sum2 = sum2 * (1 - probabilities[tour[k]]);
|
---|
91 | }
|
---|
92 | for (var k = 0; k < i; k++) {
|
---|
93 | sum2 = sum2 * (1 - probabilities[tour[k]]);
|
---|
94 | }
|
---|
95 | secondSum += sum2;
|
---|
96 | }
|
---|
97 | }
|
---|
98 | return firstSum + secondSum;
|
---|
99 | }
|
---|
100 | }
|
---|
101 | }
|
---|