[7849] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[11576] | 3 | * Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[7849] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 |
|
---|
| 26 | namespace HeuristicLab.Problems.Instances.DataAnalysis {
|
---|
| 27 | public class RationalPolynomialTwoDimensional : ArtificialRegressionDataDescriptor {
|
---|
| 28 |
|
---|
[8240] | 29 | public override string Name { get { return "Vladislavleva-8 F8(X1, X2) = ((X1 - 3)^4 + (X2 - 3)³ - (X2 -3)) / ((X2 - 2)^4 + 10)"; } }
|
---|
[7849] | 30 | public override string Description {
|
---|
| 31 | get {
|
---|
| 32 | return "Paper: Order of Nonlinearity as a Complexity Measure for Models Generated by Symbolic Regression via Pareto Genetic Programming " + Environment.NewLine
|
---|
| 33 | + "Authors: Ekaterina J. Vladislavleva, Member, IEEE, Guido F. Smits, Member, IEEE, and Dick den Hertog" + Environment.NewLine
|
---|
[8240] | 34 | + "Function: F8(X1, X2) = ((X1 - 3)^4 + (X2 - 3)³ - (X2 -3)) / ((X2 - 2)^4 + 10)" + Environment.NewLine
|
---|
[7849] | 35 | + "Training Data: 50 points X1, X2 = Rand(0.05, 6.05)" + Environment.NewLine
|
---|
[8999] | 36 | + "Test Data: 34*34 points X1, X2 = (-0.25:0.2:6.35)" + Environment.NewLine
|
---|
[8241] | 37 | + "Function Set: +, -, *, /, square, x^eps, x + eps, x * eps";
|
---|
[7849] | 38 | }
|
---|
| 39 | }
|
---|
| 40 | protected override string TargetVariable { get { return "Y"; } }
|
---|
[8825] | 41 | protected override string[] VariableNames { get { return new string[] { "X1", "X2", "Y" }; } }
|
---|
[7849] | 42 | protected override string[] AllowedInputVariables { get { return new string[] { "X1", "X2" }; } }
|
---|
| 43 | protected override int TrainingPartitionStart { get { return 0; } }
|
---|
| 44 | protected override int TrainingPartitionEnd { get { return 50; } }
|
---|
[8999] | 45 | protected override int TestPartitionStart { get { return 50; } }
|
---|
| 46 | protected override int TestPartitionEnd { get { return 50 + (34 * 34); } }
|
---|
[7849] | 47 |
|
---|
| 48 | protected override List<List<double>> GenerateValues() {
|
---|
| 49 | List<List<double>> data = new List<List<double>>();
|
---|
| 50 |
|
---|
[11576] | 51 | List<double> oneVariableTestData = ValueGenerator.GenerateSteps(-0.25m, 6.35m, 0.2m).Select(v => (double)v).ToList();
|
---|
[8999] | 52 |
|
---|
[7849] | 53 | List<List<double>> testData = new List<List<double>>() { oneVariableTestData, oneVariableTestData };
|
---|
[8999] | 54 | var combinations = ValueGenerator.GenerateAllCombinationsOfValuesInLists(testData).ToList<IEnumerable<double>>();
|
---|
[7849] | 55 |
|
---|
| 56 | for (int i = 0; i < AllowedInputVariables.Count(); i++) {
|
---|
[8999] | 57 | data.Add(ValueGenerator.GenerateUniformDistributedValues(50, 0.05, 6.05).ToList());
|
---|
[7849] | 58 | data[i].AddRange(combinations[i]);
|
---|
| 59 | }
|
---|
| 60 |
|
---|
| 61 | double x1, x2;
|
---|
| 62 | List<double> results = new List<double>();
|
---|
| 63 | for (int i = 0; i < data[0].Count; i++) {
|
---|
| 64 | x1 = data[0][i];
|
---|
| 65 | x2 = data[1][i];
|
---|
| 66 | results.Add((Math.Pow(x1 - 3, 4) + Math.Pow(x2 - 3, 3) - x2 + 3) / (Math.Pow(x2 - 2, 4) + 10));
|
---|
| 67 | }
|
---|
| 68 | data.Add(results);
|
---|
| 69 |
|
---|
| 70 | return data;
|
---|
| 71 | }
|
---|
| 72 | }
|
---|
| 73 | }
|
---|