Free cookie consent management tool by TermsFeed Policy Generator

source: branches/OptimizationNetworks/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Various/SpatialCoevolution.cs @ 11576

Last change on this file since 11576 was 11576, checked in by swagner, 10 years ago

#2205: Merged changes r11062:11557 from trunk/sources into branches/OptimizationNetworks

File size: 3.7 KB
RevLine 
[7849]1#region License Information
2/* HeuristicLab
[11576]3 * Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
[7849]4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25
26namespace HeuristicLab.Problems.Instances.DataAnalysis {
27  public class SpatialCoevolution : ArtificialRegressionDataDescriptor {
28
[8225]29    public override string Name { get { return "Spatial co-evolution F(x,y) = 1/(1 + x^(-4)) + 1/(1 + y^(-4))"; } }
[7849]30    public override string Description {
31      get {
32        return "Paper: Evolutionary consequences of coevolving targets" + Environment.NewLine
33        + "Authors: Ludo Pagie and Paulien Hogeweg" + Environment.NewLine
[8225]34        + "Function: F(x,y) = 1/(1 + x^(-4)) + 1/(1 + y^(-4))" + Environment.NewLine
35        + "Non-terminals: +, -, *, % (protected division), sin, cos, exp, ln(|x|) (protected log)" + Environment.NewLine
36        + "Terminals: only variables (no random constants)" + Environment.NewLine
[7849]37        + "The fitness of a solution is defined as the mean of the absolute differences between "
38        + "the target function and the solution over all problems on the basis of which it is evaluated. "
39        + "A solution is considered completely ’correct’ if, for all 676 problems in the ’complete’ "
40        + "problem set used in the static evaluation scheme, the absolute difference between "
[8225]41        + "solution and target function is less than 0.01 (this is a so-called hit).";
[7849]42      }
43    }
44    protected override string TargetVariable { get { return "F"; } }
[8825]45    protected override string[] VariableNames { get { return new string[] { "X", "Y", "F" }; } }
[7849]46    protected override string[] AllowedInputVariables { get { return new string[] { "X", "Y" }; } }
47    protected override int TrainingPartitionStart { get { return 0; } }
[8225]48    protected override int TrainingPartitionEnd { get { return 676; } }
49    protected override int TestPartitionStart { get { return 676; } }
[7988]50    protected override int TestPartitionEnd { get { return 1676; } }
[7849]51
52    protected override List<List<double>> GenerateValues() {
53      List<List<double>> data = new List<List<double>>();
54
[11576]55      List<double> evenlySpacedSequence = ValueGenerator.GenerateSteps(-5, 5, 0.4m).Select(v => (double)v).ToList();
[8225]56      List<List<double>> trainingData = new List<List<double>>() { evenlySpacedSequence, evenlySpacedSequence };
57      var combinations = ValueGenerator.GenerateAllCombinationsOfValuesInLists(trainingData).ToList();
[7849]58
59      for (int i = 0; i < AllowedInputVariables.Count(); i++) {
[8225]60        data.Add(combinations[i].ToList());
61        data[i].AddRange(ValueGenerator.GenerateUniformDistributedValues(1000, -5, 5).ToList());
[7849]62      }
63
64      double x, y;
65      List<double> results = new List<double>();
66      for (int i = 0; i < data[0].Count; i++) {
67        x = data[0][i];
68        y = data[1][i];
69        results.Add(1 / (1 + Math.Pow(x, -4)) + 1 / (1 + Math.Pow(y, -4)));
70      }
71      data.Add(results);
72
73      return data;
74    }
75  }
76}
Note: See TracBrowser for help on using the repository browser.