1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Linq;
|
---|
24 | using System.Threading;
|
---|
25 | using HeuristicLab.Algorithms.DataAnalysis;
|
---|
26 | using HeuristicLab.Algorithms.GeneticAlgorithm;
|
---|
27 | using HeuristicLab.Common;
|
---|
28 | using HeuristicLab.Core;
|
---|
29 | using HeuristicLab.Core.Networks;
|
---|
30 | using HeuristicLab.Data;
|
---|
31 | using HeuristicLab.Encodings.BinaryVectorEncoding;
|
---|
32 | using HeuristicLab.Networks.FeatureSelection_Network;
|
---|
33 | using HeuristicLab.Networks.Programmable;
|
---|
34 | using HeuristicLab.Problems.DataAnalysis;
|
---|
35 | using HeuristicLab.Problems.Instances.DataAnalysis;
|
---|
36 | using HeuristicLab.Random;
|
---|
37 |
|
---|
38 | namespace HeuristicLab.Networks {
|
---|
39 | [Creatable("Optimization Networks")]
|
---|
40 | [Item("Feature Selection Network", "An optimization network which contains a binary GA and a LR.")]
|
---|
41 | public sealed class FeatureSelectionNetwork : Network {
|
---|
42 | private FeatureSelectionNetwork(FeatureSelectionNetwork original, Cloner cloner) : base(original, cloner) { }
|
---|
43 | public FeatureSelectionNetwork()
|
---|
44 | : base() {
|
---|
45 | if (Nodes.Count == 0)
|
---|
46 | Initialize();
|
---|
47 | }
|
---|
48 |
|
---|
49 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
50 | return new FeatureSelectionNetwork(this, cloner);
|
---|
51 | }
|
---|
52 |
|
---|
53 | public void Initialize() {
|
---|
54 |
|
---|
55 |
|
---|
56 | #region ParametersNode
|
---|
57 | var paramsNode = new UserDefinedNode("ParametersNode");
|
---|
58 | Nodes.Add(paramsNode);
|
---|
59 |
|
---|
60 | var paramsPort = new MessagePort("Parameters");
|
---|
61 | paramsNode.Ports.Add(paramsPort);
|
---|
62 |
|
---|
63 | var rand = new MersenneTwister();
|
---|
64 | var normRand = new NormalDistributedRandom(rand, 0, 1);
|
---|
65 | var instanceProvider = new FeatureSelectionInstanceProvider();
|
---|
66 | var problemData = instanceProvider.LoadData(new FeatureSelection(100, 0.1, 0.2, rand, normRand));
|
---|
67 |
|
---|
68 | paramsPort.Parameters.Add(new PortParameter<IRegressionProblemData>("ProblemData") {
|
---|
69 | Type = PortParameterType.Output,
|
---|
70 | DefaultValue = problemData
|
---|
71 | });
|
---|
72 | paramsPort.Parameters.Add(new PortParameter<IntValue>("Length") {
|
---|
73 | Type = PortParameterType.Output,
|
---|
74 | DefaultValue = new IntValue(problemData.AllowedInputVariables.Count())
|
---|
75 | });
|
---|
76 | #endregion
|
---|
77 |
|
---|
78 | #region Selection Node
|
---|
79 | var selectionNode = new AlgorithmNode("SelectionNode");
|
---|
80 | Nodes.Add(selectionNode);
|
---|
81 |
|
---|
82 | var configPort = new ConfigurationPort("ConfigureSelection");
|
---|
83 | selectionNode.Ports.Add(configPort);
|
---|
84 |
|
---|
85 | configPort.Parameters.Add(new PortParameter<IRegressionProblemData>("ProblemData") {
|
---|
86 | Type = PortParameterType.Input
|
---|
87 | });
|
---|
88 |
|
---|
89 | var evaluatePort = new MessagePort("EvaluateSelection");
|
---|
90 | selectionNode.Ports.Add(evaluatePort);
|
---|
91 |
|
---|
92 | evaluatePort.Parameters.Add(new PortParameter<BinaryVector>("Selection") {
|
---|
93 | Type = PortParameterType.Output
|
---|
94 | });
|
---|
95 | evaluatePort.Parameters.Add(new PortParameter<DoubleValue>("Quality") {
|
---|
96 | Type = PortParameterType.Output | PortParameterType.Input
|
---|
97 | });
|
---|
98 |
|
---|
99 | Func<BinaryVector, double> eval = vector => {
|
---|
100 | // hook returns test quality!, LR optimizes training quality only!
|
---|
101 |
|
---|
102 | var msg = evaluatePort.PrepareMessage();
|
---|
103 | msg["Selection"] = vector;
|
---|
104 | evaluatePort.SendMessage(msg, new CancellationToken(false));
|
---|
105 |
|
---|
106 | return ((DoubleValue)msg["Quality"]).Value;
|
---|
107 | };
|
---|
108 |
|
---|
109 | var selectionGa = new GeneticAlgorithm();
|
---|
110 | var selectionProb = new SelectionProblem(eval, false);
|
---|
111 |
|
---|
112 | selectionGa.Problem = selectionProb;
|
---|
113 | selectionGa.MaximumGenerations.Value = 50;
|
---|
114 | selectionGa.PopulationSize.Value = 10;
|
---|
115 | selectionGa.Mutator = selectionGa.MutatorParameter.ValidValues.Where(x => x.Name == "SinglePositionBitflipManipulator").First();
|
---|
116 | selectionNode.Algorithm = selectionGa;
|
---|
117 |
|
---|
118 | #endregion
|
---|
119 |
|
---|
120 | #region RegressionNode
|
---|
121 | var regressionNode = new AlgorithmNode("Regression");
|
---|
122 | Nodes.Add(regressionNode);
|
---|
123 |
|
---|
124 | var executePort = new ExecutionPort("Execute");
|
---|
125 | regressionNode.Ports.Add(executePort);
|
---|
126 |
|
---|
127 | executePort.Parameters.Add(new PortParameter<IRegressionProblemData>("ProblemData") {
|
---|
128 | Type = PortParameterType.Input
|
---|
129 | });
|
---|
130 | executePort.Parameters.Add(new PortParameter<IRegressionSolution>("Linear regression solution") {
|
---|
131 | Type = PortParameterType.Output
|
---|
132 | });
|
---|
133 |
|
---|
134 | var linReg = new LinearRegression();
|
---|
135 | regressionNode.Algorithm = linReg;
|
---|
136 | #endregion
|
---|
137 |
|
---|
138 | #region Connector
|
---|
139 | var featureSelectionConnector = (INode)new FeatureSelectionConnector();
|
---|
140 | Nodes.Add(featureSelectionConnector);
|
---|
141 | #endregion
|
---|
142 |
|
---|
143 | #region Wire Ports
|
---|
144 | configPort.ConnectedPort = paramsPort;
|
---|
145 | evaluatePort.ConnectedPort = (IMessagePort)featureSelectionConnector.Ports["Selection Connector"];
|
---|
146 | ((IMessagePort)featureSelectionConnector.Ports["Parameters"]).ConnectedPort = paramsPort;
|
---|
147 | ((IMessagePort)featureSelectionConnector.Ports["Regression Connector"]).ConnectedPort = executePort;
|
---|
148 |
|
---|
149 | paramsPort.SendMessage(paramsPort.PrepareMessage());
|
---|
150 | #endregion
|
---|
151 | }
|
---|
152 | }
|
---|
153 | }
|
---|