[14625] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2017 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System.Linq;
|
---|
| 23 | using System.Threading;
|
---|
| 24 | using HeuristicLab.Common;
|
---|
| 25 | using HeuristicLab.Core;
|
---|
| 26 | using HeuristicLab.Core.Networks;
|
---|
| 27 | using HeuristicLab.Data;
|
---|
| 28 | using HeuristicLab.Encodings.BinaryVectorEncoding;
|
---|
| 29 | using HeuristicLab.Optimization;
|
---|
| 30 | using HeuristicLab.Parameters;
|
---|
| 31 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 32 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 33 |
|
---|
| 34 | namespace HeuristicLab.Networks.IntegratedOptimization.MachineLearning {
|
---|
| 35 | [StorableClass]
|
---|
| 36 | public sealed class FeatureSelectionOrchestrator : OrchestratorNode {
|
---|
| 37 | private const string REGRESSION_ORCHESTRATION_PORT_NAME = "Regression algorithm orchestration port";
|
---|
| 38 | private const string FEATURE_SELECTION_EVALUATION_PORT_NAME = "Feature selection evaluation port";
|
---|
| 39 | private const string REGRESSION_PROBLEM_PARAMETER_NAME = "Regression Problem Data";
|
---|
| 40 |
|
---|
| 41 | public IMessagePort RegressionOrchestrationPort {
|
---|
| 42 | get { return (IMessagePort)Ports[REGRESSION_ORCHESTRATION_PORT_NAME]; }
|
---|
| 43 | }
|
---|
| 44 | public IMessagePort FeatureSelectionEvaluationPort {
|
---|
| 45 | get { return (IMessagePort)Ports[FEATURE_SELECTION_EVALUATION_PORT_NAME]; }
|
---|
| 46 | }
|
---|
| 47 |
|
---|
| 48 | public IValueParameter<IRegressionProblemData> ProblemDataParameter {
|
---|
| 49 | get { return (IValueParameter<IRegressionProblemData>)Parameters[REGRESSION_PROBLEM_PARAMETER_NAME]; }
|
---|
| 50 | }
|
---|
| 51 |
|
---|
| 52 | public IRegressionProblemData RegressionProblemData {
|
---|
| 53 | get { return ProblemDataParameter.Value; }
|
---|
| 54 | set { ProblemDataParameter.Value = value; }
|
---|
| 55 | }
|
---|
| 56 |
|
---|
| 57 | [StorableConstructor]
|
---|
| 58 | private FeatureSelectionOrchestrator(bool deserializing) : base(deserializing) { }
|
---|
| 59 | [StorableHook(HookType.AfterDeserialization)]
|
---|
| 60 | private void AfterDeserialization() {
|
---|
| 61 | RegisterPortEvents();
|
---|
| 62 | }
|
---|
| 63 |
|
---|
| 64 | private FeatureSelectionOrchestrator(FeatureSelectionOrchestrator original, Cloner cloner)
|
---|
| 65 | : base(original, cloner) {
|
---|
| 66 | network = cloner.Clone(original.network);
|
---|
| 67 | RegisterPortEvents();
|
---|
| 68 | }
|
---|
| 69 | public override IDeepCloneable Clone(Cloner cloner) { return new FeatureSelectionOrchestrator(this, cloner); }
|
---|
| 70 |
|
---|
| 71 | //TODO remove network reference;
|
---|
| 72 | //TODO move regression problem to network
|
---|
| 73 | [Storable]
|
---|
| 74 | private readonly FeatureSelectionNetwork network;
|
---|
| 75 |
|
---|
| 76 | public FeatureSelectionOrchestrator(FeatureSelectionNetwork network)
|
---|
| 77 | : base() {
|
---|
| 78 | var featureSelectionPort = CreateEvaluationPort<BinaryVector>(FEATURE_SELECTION_EVALUATION_PORT_NAME, "BinaryVector", "Quality");
|
---|
| 79 | Ports.Add(featureSelectionPort);
|
---|
| 80 |
|
---|
| 81 | var regressionPort = CreateOrchestrationPort<IRegressionProblem>(REGRESSION_ORCHESTRATION_PORT_NAME);
|
---|
| 82 | Ports.Add(regressionPort);
|
---|
| 83 |
|
---|
| 84 | this.network = network;
|
---|
| 85 |
|
---|
| 86 | Parameters.Add(new ValueParameter<IRegressionProblemData>(REGRESSION_PROBLEM_PARAMETER_NAME, "", new RegressionProblemData()));
|
---|
| 87 | RegisterPortEvents();
|
---|
| 88 | }
|
---|
| 89 |
|
---|
| 90 | private void RegisterPortEvents() {
|
---|
| 91 | FeatureSelectionEvaluationPort.MessageReceived += (s, e) => FeatureSelectionEvaluationPort_MessageReceived(e.Value, e.Value2);
|
---|
| 92 | }
|
---|
| 93 |
|
---|
| 94 | private void FeatureSelectionEvaluationPort_MessageReceived(IMessage evaluationMessage, CancellationToken token) {
|
---|
[14675] | 95 | var problemData = (IRegressionProblemData)RegressionProblemData.Clone();
|
---|
[14625] | 96 | var binaryVector = (BinaryVector)evaluationMessage["BinaryVector"];
|
---|
[14675] | 97 | binaryVector.ElementNames = problemData.InputVariables.CheckedItems.Select(variable => variable.Value.Value);
|
---|
[14625] | 98 |
|
---|
| 99 | var allowedVariables = problemData.InputVariables.CheckedItems.Zip(binaryVector,
|
---|
| 100 | (variable, allowed) => new { VariableName = variable.Value, Allowed = allowed });
|
---|
[14675] | 101 |
|
---|
[14625] | 102 | foreach (var allowedVariable in allowedVariables)
|
---|
| 103 | problemData.InputVariables.SetItemCheckedState(allowedVariable.VariableName, allowedVariable.Allowed);
|
---|
| 104 |
|
---|
| 105 | var orchestrationMessage = RegressionOrchestrationPort.PrepareMessage();
|
---|
[14631] | 106 | orchestrationMessage["Problem"] = new RegressionProblem() { ProblemData = problemData };
|
---|
[14686] | 107 | orchestrationMessage["OrchestrationMessage"] = new EnumValue<OrchestrationMessage>(OrchestrationMessage.Prepare | OrchestrationMessage.ClearRuns);
|
---|
[14625] | 108 | RegressionOrchestrationPort.SendMessage(orchestrationMessage, token);
|
---|
| 109 |
|
---|
| 110 | var startMessage = RegressionOrchestrationPort.PrepareMessage();
|
---|
| 111 | startMessage["OrchestrationMessage"] = new EnumValue<OrchestrationMessage>(OrchestrationMessage.Start);
|
---|
| 112 | RegressionOrchestrationPort.SendMessage(startMessage, token);
|
---|
| 113 |
|
---|
| 114 | var results = (ResultCollection)startMessage["Results"];
|
---|
| 115 |
|
---|
| 116 | var regressionSolution = results.Select(r => r.Value).OfType<IRegressionSolution>().First();
|
---|
[14686] | 117 | double quality = regressionSolution.TestMeanAbsoluteError;
|
---|
[14675] | 118 |
|
---|
| 119 | UpdatedResults(binaryVector, regressionSolution);
|
---|
[14625] | 120 | evaluationMessage["Quality"] = new DoubleValue(quality);
|
---|
| 121 | }
|
---|
| 122 |
|
---|
[14675] | 123 | private void UpdatedResults(BinaryVector binaryVector, IRegressionSolution solution) {
|
---|
[14686] | 124 | if (!Results.ContainsKey("Best Vector")) Results.Add(new Result("Best Vector", typeof(BinaryVector)));
|
---|
| 125 | if (!Results.ContainsKey("Best Solution")) Results.Add(new Result("Best Solution", typeof(IRegressionSolution)));
|
---|
[14625] | 126 |
|
---|
[14686] | 127 | var previousBestVector = (BinaryVector)Results["Best Vector"].Value;
|
---|
| 128 | var prevoiusBestSolution = (IRegressionSolution)Results["Best Solution"].Value;
|
---|
[14675] | 129 |
|
---|
[14686] | 130 | //check if better vector & solution has been found
|
---|
[14688] | 131 | if (prevoiusBestSolution != null && prevoiusBestSolution.TestMeanAbsoluteError <= solution.TestMeanAbsoluteError)
|
---|
[14675] | 132 | return;
|
---|
| 133 |
|
---|
[14686] | 134 | Results["Best Vector"].Value = binaryVector;
|
---|
| 135 | Results["Best Solution"].Value = solution;
|
---|
[14675] | 136 | }
|
---|
| 137 |
|
---|
| 138 |
|
---|
[14625] | 139 | //TODO Remove methods
|
---|
| 140 | public override void Pause() { network.Pause(); }
|
---|
[14686] | 141 | public override void Prepare(bool clearRuns = false) { network.Prepare(clearRuns); Results.Clear(); }
|
---|
[14625] | 142 | public override void Start() { network.Start(); }
|
---|
| 143 | public override void Stop() { network.Stop(); }
|
---|
| 144 | }
|
---|
| 145 | }
|
---|