[14625] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2017 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System.Linq;
|
---|
| 23 | using System.Threading;
|
---|
| 24 | using HeuristicLab.Algorithms.DataAnalysis;
|
---|
| 25 | using HeuristicLab.Algorithms.OffspringSelectionGeneticAlgorithm;
|
---|
| 26 | using HeuristicLab.Common;
|
---|
| 27 | using HeuristicLab.Core;
|
---|
| 28 | using HeuristicLab.Core.Networks;
|
---|
| 29 | using HeuristicLab.Data;
|
---|
| 30 | using HeuristicLab.Encodings.BinaryVectorEncoding;
|
---|
| 31 | using HeuristicLab.Optimization;
|
---|
| 32 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 33 |
|
---|
| 34 | namespace HeuristicLab.Networks.IntegratedOptimization.MachineLearning {
|
---|
| 35 | [Item("Feature Selection Network 2", "")]
|
---|
| 36 | [Creatable("Optimization Networks")]
|
---|
| 37 | [StorableClass]
|
---|
| 38 | public sealed class FeatureSelectionNetwork : Network {
|
---|
| 39 | [StorableConstructor]
|
---|
| 40 | private FeatureSelectionNetwork(bool deserializing) : base(deserializing) { }
|
---|
| 41 |
|
---|
| 42 | private FeatureSelectionNetwork(FeatureSelectionNetwork original, Cloner cloner)
|
---|
| 43 | : base(original, cloner) {
|
---|
| 44 | }
|
---|
| 45 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 46 | return new FeatureSelectionNetwork(this, cloner);
|
---|
| 47 | }
|
---|
| 48 |
|
---|
| 49 | [Storable]
|
---|
| 50 | private readonly OrchestratedAlgorithmNode FeatureSelectionAlgorithmNode;
|
---|
| 51 | [Storable]
|
---|
| 52 | private readonly OrchestratedAlgorithmNode RegressionAlgorithmNode;
|
---|
| 53 | [Storable]
|
---|
| 54 | private readonly FeatureSelectionOrchestrator Orchestrator;
|
---|
| 55 |
|
---|
| 56 | public FeatureSelectionNetwork()
|
---|
| 57 | : base() {
|
---|
| 58 | Orchestrator = new FeatureSelectionOrchestrator(this);
|
---|
| 59 | Nodes.Add(Orchestrator);
|
---|
| 60 |
|
---|
| 61 | var featureSelectionAlgorithm = CreateFeatureSelectionAlgorithm();
|
---|
[14635] | 62 | //TODO configure FeatureSelectionProblem
|
---|
[14625] | 63 |
|
---|
| 64 | FeatureSelectionAlgorithmNode = new OrchestratedAlgorithmNode("Feature Selection");
|
---|
| 65 | FeatureSelectionAlgorithmNode.Algorithm = featureSelectionAlgorithm;
|
---|
| 66 | FeatureSelectionAlgorithmNode.EvaluationPort.ConnectedPort = Orchestrator.FeatureSelectionEvaluationPort;
|
---|
| 67 | FeatureSelectionAlgorithmNode.EvaluationPort.CloneParametersFromPort(Orchestrator.FeatureSelectionEvaluationPort);
|
---|
| 68 | Nodes.Add(FeatureSelectionAlgorithmNode);
|
---|
| 69 |
|
---|
| 70 | var regressionAlgorithm = CreateRegressionAlgorithm();
|
---|
| 71 | RegressionAlgorithmNode = new OrchestratedAlgorithmNode("Regression");
|
---|
| 72 | RegressionAlgorithmNode.Algorithm = regressionAlgorithm;
|
---|
[14635] | 73 | Orchestrator.RegressionOrchestrationPort.ConnectedPort = RegressionAlgorithmNode.OrchestrationPort;
|
---|
[14625] | 74 | RegressionAlgorithmNode.OrchestrationPort.CloneParametersFromPort(Orchestrator.RegressionOrchestrationPort);
|
---|
| 75 | Nodes.Add(RegressionAlgorithmNode);
|
---|
| 76 | }
|
---|
| 77 |
|
---|
| 78 | private IAlgorithm CreateFeatureSelectionAlgorithm() {
|
---|
| 79 | var problem = new OrchestratedBinaryProblem(Orchestrator, 0, false);
|
---|
| 80 | problem.Encoding.SolutionCreator = new RandomBinaryVectorCreator() { TrueProbability = new DoubleValue(0.2) };
|
---|
| 81 |
|
---|
| 82 | var osga = new OffspringSelectionGeneticAlgorithm();
|
---|
| 83 | osga.Problem = problem;
|
---|
| 84 | osga.PopulationSize.Value = 100;
|
---|
| 85 | osga.ComparisonFactorLowerBound.Value = 1;
|
---|
| 86 | osga.ComparisonFactorUpperBound.Value = 1;
|
---|
| 87 | osga.SuccessRatio.Value = 1.0;
|
---|
| 88 | osga.MutationProbability.Value = 0.15;
|
---|
| 89 | osga.Mutator = osga.MutatorParameter.ValidValues.OfType<SomePositionsBitflipManipulator>().First();
|
---|
| 90 | return osga;
|
---|
| 91 | }
|
---|
| 92 |
|
---|
| 93 | private static IAlgorithm CreateRegressionAlgorithm() {
|
---|
| 94 | var linreg = new LinearRegression();
|
---|
| 95 | return linreg;
|
---|
| 96 | }
|
---|
| 97 |
|
---|
| 98 |
|
---|
| 99 | public void Prepare() { Prepare(false); }
|
---|
| 100 | public void Prepare(bool clearRuns) {
|
---|
| 101 | var msg = FeatureSelectionAlgorithmNode.OrchestrationPort.PrepareMessage();
|
---|
| 102 | if (clearRuns)
|
---|
| 103 | msg["OrchestrationMessage"] = new EnumValue<OrchestrationMessage>(OrchestrationMessage.Prepare | OrchestrationMessage.ClearRuns);
|
---|
| 104 | else
|
---|
| 105 | msg["OrchestrationMessage"] = new EnumValue<OrchestrationMessage>(OrchestrationMessage.Prepare);
|
---|
| 106 | FeatureSelectionAlgorithmNode.OrchestrationPort.ReceiveMessage(msg, new CancellationToken());
|
---|
| 107 | }
|
---|
| 108 |
|
---|
| 109 | public void Start() {
|
---|
| 110 | var problem = (OrchestratedBinaryProblem)FeatureSelectionAlgorithmNode.Algorithm.Problem;
|
---|
| 111 | problem.Encoding.Length = Orchestrator.RegressionProblemData.AllowedInputVariables.Count();
|
---|
| 112 |
|
---|
| 113 | var msg = FeatureSelectionAlgorithmNode.OrchestrationPort.PrepareMessage();
|
---|
| 114 | msg["OrchestrationMessage"] = new EnumValue<OrchestrationMessage>(OrchestrationMessage.Start);
|
---|
| 115 | FeatureSelectionAlgorithmNode.OrchestrationPort.ReceiveMessage(msg, new CancellationToken());
|
---|
| 116 | }
|
---|
| 117 | public void Pause() {
|
---|
| 118 | var msg = FeatureSelectionAlgorithmNode.OrchestrationPort.PrepareMessage();
|
---|
| 119 | msg["OrchestrationMessage"] = new EnumValue<OrchestrationMessage>(OrchestrationMessage.Pause);
|
---|
| 120 | FeatureSelectionAlgorithmNode.OrchestrationPort.ReceiveMessage(msg, new CancellationToken());
|
---|
| 121 | }
|
---|
| 122 | public void Stop() {
|
---|
| 123 | var msg = FeatureSelectionAlgorithmNode.OrchestrationPort.PrepareMessage();
|
---|
| 124 | msg["OrchestrationMessage"] = new EnumValue<OrchestrationMessage>(OrchestrationMessage.Stop);
|
---|
[14675] | 125 | FeatureSelectionAlgorithmNode.OrchestrationPort.ReceiveMessage(msg, new CancellationToken());
|
---|
| 126 | RegressionAlgorithmNode.Algorithm.Runs.Clear();
|
---|
[14625] | 127 | }
|
---|
| 128 | }
|
---|
| 129 | }
|
---|