1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Text;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.DataAnalysis;
|
---|
27 |
|
---|
28 | namespace HeuristicLab.Modeling {
|
---|
29 | public class Model : IModel {
|
---|
30 | #region IModel Members
|
---|
31 |
|
---|
32 | private Dataset dataset;
|
---|
33 | public Dataset Dataset {
|
---|
34 | get { return dataset; }
|
---|
35 | set { dataset = value; }
|
---|
36 | }
|
---|
37 |
|
---|
38 | private string targetVariable;
|
---|
39 | public string TargetVariable {
|
---|
40 | get { return targetVariable; }
|
---|
41 | set { targetVariable = value; }
|
---|
42 | }
|
---|
43 |
|
---|
44 | private double trainingMSE;
|
---|
45 | public double TrainingMeanSquaredError {
|
---|
46 | get { return trainingMSE; }
|
---|
47 | set { trainingMSE = value; }
|
---|
48 | }
|
---|
49 |
|
---|
50 | private double validationMSE;
|
---|
51 | public double ValidationMeanSquaredError {
|
---|
52 | get { return validationMSE; }
|
---|
53 | set { validationMSE = value; }
|
---|
54 | }
|
---|
55 |
|
---|
56 | private double testMSE;
|
---|
57 | public double TestMeanSquaredError {
|
---|
58 | get { return testMSE; }
|
---|
59 | set { testMSE = value; }
|
---|
60 | }
|
---|
61 |
|
---|
62 | public double TrainingMeanAbsolutePercentageError {
|
---|
63 | get;
|
---|
64 | set;
|
---|
65 | }
|
---|
66 |
|
---|
67 | public double ValidationMeanAbsolutePercentageError {
|
---|
68 | get;
|
---|
69 | set;
|
---|
70 | }
|
---|
71 |
|
---|
72 | public double TestMeanAbsolutePercentageError {
|
---|
73 | get;
|
---|
74 | set;
|
---|
75 | }
|
---|
76 |
|
---|
77 | public double TrainingMeanAbsolutePercentageOfRangeError {
|
---|
78 | get;
|
---|
79 | set;
|
---|
80 | }
|
---|
81 |
|
---|
82 | public double ValidationMeanAbsolutePercentageOfRangeError {
|
---|
83 | get;
|
---|
84 | set;
|
---|
85 | }
|
---|
86 |
|
---|
87 | public double TestMeanAbsolutePercentageOfRangeError {
|
---|
88 | get;
|
---|
89 | set;
|
---|
90 | }
|
---|
91 |
|
---|
92 | public double TrainingCoefficientOfDetermination {
|
---|
93 | get;
|
---|
94 | set;
|
---|
95 | }
|
---|
96 |
|
---|
97 | public double ValidationCoefficientOfDetermination {
|
---|
98 | get;
|
---|
99 | set;
|
---|
100 | }
|
---|
101 |
|
---|
102 | public double TestCoefficientOfDetermination {
|
---|
103 | get;
|
---|
104 | set;
|
---|
105 | }
|
---|
106 |
|
---|
107 | public double TrainingVarianceAccountedFor {
|
---|
108 | get;
|
---|
109 | set;
|
---|
110 | }
|
---|
111 |
|
---|
112 | public double ValidationVarianceAccountedFor {
|
---|
113 | get;
|
---|
114 | set;
|
---|
115 | }
|
---|
116 |
|
---|
117 | public double TestVarianceAccountedFor {
|
---|
118 | get;
|
---|
119 | set;
|
---|
120 | }
|
---|
121 |
|
---|
122 | private IItem data;
|
---|
123 | public IItem Data {
|
---|
124 | get { return data; }
|
---|
125 | set { data = value; }
|
---|
126 | }
|
---|
127 |
|
---|
128 | #endregion
|
---|
129 | }
|
---|
130 | }
|
---|