[5484] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[7259] | 3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[5484] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
[7812] | 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Core;
|
---|
[5484] | 26 |
|
---|
| 27 | namespace HeuristicLab.Random {
|
---|
[7812] | 28 | public static class RandomEnumerable {
|
---|
[5484] | 29 | public static IEnumerable<int> SampleRandomNumbers(int maxElement, int count) {
|
---|
| 30 | return SampleRandomNumbers(Environment.TickCount, 0, maxElement, count);
|
---|
| 31 | }
|
---|
| 32 |
|
---|
| 33 | public static IEnumerable<int> SampleRandomNumbers(int start, int end, int count) {
|
---|
| 34 | return SampleRandomNumbers(Environment.TickCount, start, end, count);
|
---|
| 35 | }
|
---|
| 36 |
|
---|
| 37 | //algorithm taken from progamming pearls page 127
|
---|
| 38 | //IMPORTANT because IEnumerables with yield are used the seed must best be specified to return always
|
---|
| 39 | //the same sequence of numbers without caching the values.
|
---|
| 40 | public static IEnumerable<int> SampleRandomNumbers(int seed, int start, int end, int count) {
|
---|
| 41 | int remaining = end - start;
|
---|
| 42 | var mt = new FastRandom(seed);
|
---|
| 43 | for (int i = start; i < end && count > 0; i++) {
|
---|
| 44 | double probability = mt.NextDouble();
|
---|
| 45 | if (probability < ((double)count) / remaining) {
|
---|
| 46 | count--;
|
---|
| 47 | yield return i;
|
---|
| 48 | }
|
---|
| 49 | remaining--;
|
---|
| 50 | }
|
---|
| 51 | }
|
---|
[7812] | 52 |
|
---|
| 53 | /// <summary>
|
---|
| 54 | /// Chooses one elements from a sequence giving each element an equal chance.
|
---|
| 55 | /// </summary>
|
---|
| 56 | /// <remarks>
|
---|
| 57 | /// Runtime complexity is O(1) for sequences that are of type <see cref="IList{T}"/> and
|
---|
| 58 | /// O(N) for all other.
|
---|
| 59 | /// </remarks>
|
---|
| 60 | /// <exception cref="ArgumentException">If the sequence is empty.</exception>
|
---|
| 61 | /// <typeparam name="T">The type of the items to be selected.</typeparam>
|
---|
| 62 | /// <param name="source">The sequence of elements.</param>
|
---|
| 63 | /// <param name="random">The random number generator to use, its NextDouble() method must produce values in the range [0;1)</param>
|
---|
| 64 | /// <param name="count">The number of items to be selected.</param>
|
---|
| 65 | /// <returns>An element that has been chosen randomly from the sequence.</returns>
|
---|
| 66 | public static T SampleRandom<T>(this IEnumerable<T> source, IRandom random) {
|
---|
| 67 | if (!source.Any()) throw new ArgumentException("sequence is empty.", "source");
|
---|
| 68 | return source.SampleRandom(random, 1).First();
|
---|
| 69 | }
|
---|
| 70 |
|
---|
| 71 | /// <summary>
|
---|
| 72 | /// Chooses <paramref name="count"/> elements from a sequence with repetition with equal chances for each element.
|
---|
| 73 | /// </summary>
|
---|
| 74 | /// <remarks>
|
---|
| 75 | /// Runtime complexity is O(count) for sequences that are <see cref="IList{T}"/> and
|
---|
| 76 | /// O(N * count) for all other. No exception is thrown if the sequence is empty.
|
---|
| 77 | ///
|
---|
| 78 | /// The method is online.
|
---|
| 79 | /// </remarks>
|
---|
| 80 | /// <typeparam name="T">The type of the items to be selected.</typeparam>
|
---|
| 81 | /// <param name="source">The sequence of elements.</param>
|
---|
| 82 | /// <param name="random">The random number generator to use, its NextDouble() method must produce values in the range [0;1)</param>
|
---|
| 83 | /// <param name="count">The number of items to be selected.</param>
|
---|
| 84 | /// <returns>A sequence of elements that have been chosen randomly.</returns>
|
---|
| 85 | public static IEnumerable<T> SampleRandom<T>(this IEnumerable<T> source, IRandom random, int count) {
|
---|
| 86 | var listSource = source as IList<T>;
|
---|
| 87 | if (listSource != null) {
|
---|
| 88 | while (count > 0) {
|
---|
| 89 | yield return listSource[random.Next(listSource.Count)];
|
---|
| 90 | count--;
|
---|
| 91 | }
|
---|
| 92 | } else {
|
---|
| 93 | while (count > 0) {
|
---|
| 94 | var enumerator = source.GetEnumerator();
|
---|
| 95 | enumerator.MoveNext();
|
---|
| 96 | T selectedItem = enumerator.Current;
|
---|
| 97 | int counter = 1;
|
---|
| 98 | while (enumerator.MoveNext()) {
|
---|
| 99 | counter++;
|
---|
| 100 | if (counter * random.NextDouble() < 1.0)
|
---|
| 101 | selectedItem = enumerator.Current;
|
---|
| 102 | }
|
---|
| 103 | yield return selectedItem;
|
---|
| 104 | count--;
|
---|
| 105 | }
|
---|
| 106 | }
|
---|
| 107 | }
|
---|
| 108 |
|
---|
| 109 | /// <summary>
|
---|
| 110 | /// Chooses <paramref name="count"/> elements from a sequence without repetition with equal chances for each element.
|
---|
| 111 | /// The items are returned in the same order as they appear in the sequence.
|
---|
| 112 | /// </summary>
|
---|
| 113 | /// <remarks>
|
---|
| 114 | /// Runtime complexity is O(N) for all sequences.
|
---|
| 115 | /// No exception is thrown if the sequence contains less items than there are to be selected.
|
---|
| 116 | ///
|
---|
| 117 | /// The method is online.
|
---|
| 118 | /// </remarks>
|
---|
| 119 | /// <typeparam name="T">The type of the items to be selected.</typeparam>
|
---|
| 120 | /// <param name="source">The sequence of elements.</param>
|
---|
| 121 | /// <param name="random">The random number generator to use, its NextDouble() method must produce values in the range [0;1)</param>
|
---|
| 122 | /// <param name="count">The number of items to be selected.</param>
|
---|
[9363] | 123 | /// <param name="sourceCount">Optional parameter specifying the number of elements in the source enumerations</param>
|
---|
[7812] | 124 | /// <returns>A sequence of elements that have been chosen randomly.</returns>
|
---|
[9363] | 125 | public static IEnumerable<T> SampleRandomWithoutRepetition<T>(this IEnumerable<T> source, IRandom random, int count, int sourceCount = -1) {
|
---|
| 126 | if (sourceCount == -1) sourceCount = source.Count();
|
---|
| 127 | int remaining = sourceCount;
|
---|
[7812] | 128 | foreach (var item in source) {
|
---|
| 129 | if (random.NextDouble() * remaining < count) {
|
---|
| 130 | count--;
|
---|
| 131 | yield return item;
|
---|
| 132 | if (count <= 0) break;
|
---|
| 133 | }
|
---|
| 134 | remaining--;
|
---|
| 135 | }
|
---|
| 136 | }
|
---|
| 137 |
|
---|
| 138 | /// <summary>
|
---|
| 139 | /// Chooses elements out of a sequence with repetition. The chance that an item is selected is proportional or inverse-proportional
|
---|
| 140 | /// to the <paramref name="weights"/>.
|
---|
| 141 | /// </summary>
|
---|
| 142 | /// <remarks>
|
---|
| 143 | /// In case both <paramref name="inverseProportional"/> and <paramref name="windowing"/> are false values must be > 0,
|
---|
| 144 | /// otherwise an InvalidOperationException is thrown.
|
---|
| 145 | ///
|
---|
| 146 | /// The method internally holds two arrays: One that is the sequence itself and another one for the values.
|
---|
| 147 | /// </remarks>
|
---|
| 148 | /// <typeparam name="T">The type of the items to be selected.</typeparam>
|
---|
| 149 | /// <param name="source">The sequence of elements.</param>
|
---|
| 150 | /// <param name="random">The random number generator to use, its NextDouble() method must produce values in the range [0;1)</param>
|
---|
| 151 | /// <param name="count">The number of items to be selected.</param>
|
---|
| 152 | /// <param name="weights">The weight values for the items.</param>
|
---|
| 153 | /// <param name="windowing">Whether to scale the proportional values or not.</param>
|
---|
| 154 | /// <param name="inverseProportional">Determines whether to choose proportionally (false) or inverse-proportionally (true).</param>
|
---|
| 155 | /// <returns>A sequence of selected items. The sequence might contain the same item more than once.</returns>
|
---|
| 156 | public static IEnumerable<T> SampleProportional<T>(this IEnumerable<T> source, IRandom random, int count, IEnumerable<double> weights, bool windowing = true, bool inverseProportional = false) {
|
---|
| 157 | return source.SampleProportional(random, weights, windowing, inverseProportional).Take(count);
|
---|
| 158 | }
|
---|
| 159 |
|
---|
| 160 | /// <summary>
|
---|
| 161 | /// Same as <seealso cref="SampleProportional<T>"/>, but chooses an item exactly once.
|
---|
| 162 | /// </summary>
|
---|
| 163 | /// <remarks>
|
---|
| 164 | /// In case both <paramref name="inverseProportional"/> and <paramref name="windowing"/> are false values must be > 0,
|
---|
| 165 | /// otherwise an InvalidOperationException is thrown.
|
---|
| 166 | ///
|
---|
| 167 | /// The method internally holds two arrays: One that is the sequence itself and another one for the values.
|
---|
| 168 | /// </remarks>
|
---|
| 169 | /// <typeparam name="T">The type of the items to be selected.</typeparam>
|
---|
| 170 | /// <param name="source">The sequence of elements.</param>
|
---|
| 171 | /// <param name="random">The random number generator to use, its NextDouble() method must produce values in the range [0;1)</param>
|
---|
| 172 | /// <param name="count">The number of items to be selected.</param>
|
---|
| 173 | /// <param name="weights">The weight values for the items.</param>
|
---|
| 174 | /// <param name="windowing">Whether to scale the proportional values or not.</param>
|
---|
| 175 | /// <param name="maximization">Determines whether to choose proportionally (true) or inverse-proportionally (false).</param>
|
---|
| 176 | /// <returns>A sequence of selected items.</returns>
|
---|
| 177 | public static IEnumerable<T> SampleProportionalWithoutRepetition<T>(this IEnumerable<T> source, IRandom random, int count, IEnumerable<double> weights, bool windowing = true, bool inverseProportional = false) {
|
---|
| 178 | return source.SampleProportionalWithoutRepetition(random, weights, windowing, inverseProportional).Take(count);
|
---|
| 179 | }
|
---|
| 180 | #region Proportional Helpers
|
---|
| 181 | private static IEnumerable<T> SampleProportional<T>(this IEnumerable<T> source, IRandom random, IEnumerable<double> weights, bool windowing, bool inverseProportional) {
|
---|
| 182 | var sourceArray = source.ToArray();
|
---|
| 183 | var valueArray = PrepareProportional<T>(sourceArray, weights, windowing, inverseProportional);
|
---|
| 184 | double total = valueArray.Sum();
|
---|
| 185 |
|
---|
| 186 | while (true) {
|
---|
| 187 | int index = 0;
|
---|
| 188 | double ball = valueArray[index], sum = random.NextDouble() * total;
|
---|
| 189 | while (ball < sum)
|
---|
| 190 | ball += valueArray[++index];
|
---|
| 191 | yield return sourceArray[index];
|
---|
| 192 | }
|
---|
| 193 | }
|
---|
| 194 | private static IEnumerable<T> SampleProportionalWithoutRepetition<T>(this IEnumerable<T> source, IRandom random, IEnumerable<double> weights, bool windowing, bool inverseProportional) {
|
---|
| 195 | var sourceArray = source.ToArray();
|
---|
| 196 | var valueArray = PrepareProportional<T>(sourceArray, weights, windowing, inverseProportional);
|
---|
| 197 | double total = valueArray.Sum();
|
---|
| 198 |
|
---|
| 199 | HashSet<int> chosenIndices = new HashSet<int>();
|
---|
| 200 | while (chosenIndices.Count < sourceArray.Length) {
|
---|
| 201 | int index = 0;
|
---|
| 202 | double ball = valueArray[index], sum = random.NextDouble() * total;
|
---|
| 203 | while (ball < sum) {
|
---|
| 204 | index++;
|
---|
| 205 | if (!chosenIndices.Contains(index))
|
---|
| 206 | ball += valueArray[++index];
|
---|
| 207 | }
|
---|
| 208 | yield return sourceArray[index];
|
---|
| 209 | chosenIndices.Add(index);
|
---|
| 210 | total -= valueArray[index];
|
---|
| 211 | }
|
---|
| 212 | }
|
---|
| 213 | private static double[] PrepareProportional<T>(IList<T> sourceArray, IEnumerable<double> weights, bool windowing, bool inverseProportional) {
|
---|
| 214 | double maxValue = double.MinValue, minValue = double.MaxValue;
|
---|
| 215 | double[] valueArray = new double[sourceArray.Count];
|
---|
| 216 |
|
---|
| 217 | var weightsEnum = weights.GetEnumerator();
|
---|
| 218 | for (int i = 0; i < sourceArray.Count && weightsEnum.MoveNext(); i++) {
|
---|
| 219 | valueArray[i] = weightsEnum.Current;
|
---|
| 220 | if (valueArray[i] > maxValue) maxValue = valueArray[i];
|
---|
| 221 | if (valueArray[i] < minValue) minValue = valueArray[i];
|
---|
| 222 | }
|
---|
| 223 | if (minValue == maxValue) { // all values are equal
|
---|
| 224 | for (int i = 0; i < sourceArray.Count; i++) {
|
---|
| 225 | valueArray[i] = 1.0;
|
---|
| 226 | }
|
---|
| 227 | } else {
|
---|
| 228 | if (windowing) {
|
---|
[7828] | 229 | if (inverseProportional) InverseProportionalScale(valueArray, maxValue);
|
---|
| 230 | else ProportionalScale(valueArray, minValue);
|
---|
[7812] | 231 | } else {
|
---|
| 232 | if (minValue < 0.0) throw new InvalidOperationException("Proportional selection without windowing does not work with values < 0.");
|
---|
| 233 | if (inverseProportional) InverseProportionalScale(valueArray, 2 * maxValue);
|
---|
| 234 | }
|
---|
| 235 | }
|
---|
| 236 | return valueArray;
|
---|
| 237 | }
|
---|
| 238 | private static void ProportionalScale(double[] values, double minValue) {
|
---|
| 239 | for (int i = 0; i < values.Length; i++) {
|
---|
| 240 | values[i] = values[i] - minValue;
|
---|
| 241 | }
|
---|
| 242 | }
|
---|
| 243 | private static void InverseProportionalScale(double[] values, double maxValue) {
|
---|
| 244 | for (int i = 0; i < values.Length; i++) {
|
---|
| 245 | values[i] = maxValue - values[i];
|
---|
| 246 | }
|
---|
| 247 | }
|
---|
| 248 | #endregion
|
---|
| 249 |
|
---|
| 250 | /// <summary>
|
---|
| 251 | /// Shuffles an enumerable and returns a new enumerable according to the Fisher-Yates shuffle.
|
---|
| 252 | /// </summary>
|
---|
| 253 | /// <remarks>
|
---|
| 254 | /// Note that the source enumerable is transformed into an array.
|
---|
| 255 | ///
|
---|
| 256 | /// The implementation is described in http://stackoverflow.com/questions/1287567/c-is-using-random-and-orderby-a-good-shuffle-algorithm.
|
---|
| 257 | /// </remarks>
|
---|
| 258 | /// <typeparam name="T">The type of the items that are to be shuffled.</typeparam>
|
---|
| 259 | /// <param name="source">The enumerable that contains the items.</param>
|
---|
| 260 | /// <param name="random">The random number generator, its Next(n) method must deliver uniformly distributed random numbers in the range [0;n).</param>
|
---|
| 261 | /// <returns>An enumerable with the elements shuffled.</returns>
|
---|
| 262 | public static IEnumerable<T> Shuffle<T>(this IEnumerable<T> source, IRandom random) {
|
---|
| 263 | T[] elements = source.ToArray();
|
---|
| 264 | for (int i = elements.Length - 1; i > 0; i--) {
|
---|
| 265 | // Swap element "i" with a random earlier element (including itself)
|
---|
| 266 | int swapIndex = random.Next(i + 1);
|
---|
| 267 | yield return elements[swapIndex];
|
---|
| 268 | elements[swapIndex] = elements[i];
|
---|
| 269 | // we don't actually perform the swap, we can forget about the
|
---|
| 270 | // swapped element because we already returned it.
|
---|
| 271 | }
|
---|
| 272 | yield return elements[0];
|
---|
| 273 | }
|
---|
[5484] | 274 | }
|
---|
| 275 | }
|
---|