1 | using System;
|
---|
2 | using HeuristicLab.Common;
|
---|
3 | using HeuristicLab.Core;
|
---|
4 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
5 |
|
---|
6 | namespace HeuristicLab.Random {
|
---|
7 | /// <summary>
|
---|
8 | /// A fast random number generator for .NET
|
---|
9 | /// Colin Green, January 2005
|
---|
10 | ///
|
---|
11 | /// September 4th 2005
|
---|
12 | /// Added NextBytesUnsafe() - commented out by default.
|
---|
13 | /// Fixed bug in Reinitialise() - y,z and w variables were not being reset.
|
---|
14 | ///
|
---|
15 | /// Key points:
|
---|
16 | /// 1) Based on a simple and fast xor-shift pseudo random number generator (RNG) specified in:
|
---|
17 | /// Marsaglia, George. (2003). Xorshift RNGs.
|
---|
18 | /// http://www.jstatsoft.org/v08/i14/xorshift.pdf
|
---|
19 | ///
|
---|
20 | /// This particular implementation of xorshift has a period of 2^128-1. See the above paper to see
|
---|
21 | /// how this can be easily extened if you need a longer period. At the time of writing I could find no
|
---|
22 | /// information on the period of System.Random for comparison.
|
---|
23 | ///
|
---|
24 | /// 2) Faster than System.Random. Up to 8x faster, depending on which methods are called.
|
---|
25 | ///
|
---|
26 | /// 3) Direct replacement for System.Random. This class implements all of the methods that System.Random
|
---|
27 | /// does plus some additional methods. The like named methods are functionally equivalent.
|
---|
28 | ///
|
---|
29 | /// 4) Allows fast re-initialisation with a seed, unlike System.Random which accepts a seed at construction
|
---|
30 | /// time which then executes a relatively expensive initialisation routine. This provides a vast speed improvement
|
---|
31 | /// if you need to reset the pseudo-random number sequence many times, e.g. if you want to re-generate the same
|
---|
32 | /// sequence many times. An alternative might be to cache random numbers in an array, but that approach is limited
|
---|
33 | /// by memory capacity and the fact that you may also want a large number of different sequences cached. Each sequence
|
---|
34 | /// can each be represented by a single seed value (int) when using FastRandom.
|
---|
35 | ///
|
---|
36 | /// Notes.
|
---|
37 | /// A further performance improvement can be obtained by declaring local variables as static, thus avoiding
|
---|
38 | /// re-allocation of variables on each call. However care should be taken if multiple instances of
|
---|
39 | /// FastRandom are in use or if being used in a multi-threaded environment.
|
---|
40 | ///
|
---|
41 | /// August 2010:
|
---|
42 | /// adapted for HeuristicLab by gkronber (cloning, persistence, IRandom interface)
|
---|
43 | ///
|
---|
44 | /// </summary>
|
---|
45 | [StorableClass]
|
---|
46 | public sealed class FastRandom : Item, IRandom {
|
---|
47 | // The +1 ensures NextDouble doesn't generate 1.0
|
---|
48 | private const double REAL_UNIT_INT = 1.0 / ((double)int.MaxValue + 1.0);
|
---|
49 | private const double REAL_UNIT_UINT = 1.0 / ((double)uint.MaxValue + 1.0);
|
---|
50 | private const uint Y = 842502087, Z = 3579807591, W = 273326509;
|
---|
51 |
|
---|
52 | [Storable]
|
---|
53 | private uint x, y, z, w;
|
---|
54 |
|
---|
55 | #region Constructors
|
---|
56 | /// <summary>
|
---|
57 | /// Used by HeuristicLab.Persistence to initialize new instances during deserialization.
|
---|
58 | /// </summary>
|
---|
59 | /// <param name="deserializing">true, if the constructor is called during deserialization.</param>
|
---|
60 | [StorableConstructor]
|
---|
61 | private FastRandom(bool deserializing) : base(deserializing) { }
|
---|
62 |
|
---|
63 | /// <summary>
|
---|
64 | /// Initializes a new instance from an existing one (copy constructor).
|
---|
65 | /// </summary>
|
---|
66 | /// <param name="original">The original <see cref="FastRandom"/> instance which is used to initialize the new instance.</param>
|
---|
67 | /// <param name="cloner">A <see cref="Cloner"/> which is used to track all already cloned objects in order to avoid cycles.</param>
|
---|
68 | private FastRandom(FastRandom original, Cloner cloner)
|
---|
69 | : base(original, cloner) {
|
---|
70 | x = original.x;
|
---|
71 | y = original.y;
|
---|
72 | z = original.z;
|
---|
73 | w = original.w;
|
---|
74 | bitBuffer = original.bitBuffer;
|
---|
75 | bitMask = original.bitMask;
|
---|
76 | }
|
---|
77 |
|
---|
78 | /// <summary>
|
---|
79 | /// Initialises a new instance using time dependent seed.
|
---|
80 | /// </summary>
|
---|
81 | public FastRandom() {
|
---|
82 | // Initialise using the system tick count.
|
---|
83 | Reinitialise((int)Environment.TickCount);
|
---|
84 | }
|
---|
85 |
|
---|
86 | /// <summary>
|
---|
87 | /// Initialises a new instance using an int value as seed.
|
---|
88 | /// This constructor signature is provided to maintain compatibility with
|
---|
89 | /// System.Random
|
---|
90 | /// </summary>
|
---|
91 | public FastRandom(int seed) {
|
---|
92 | Reinitialise(seed);
|
---|
93 | }
|
---|
94 | #endregion
|
---|
95 |
|
---|
96 | #region Public Methods [Reinitialisation]
|
---|
97 |
|
---|
98 | /// <summary>
|
---|
99 | /// Reinitialises using an int value as a seed.
|
---|
100 | /// </summary>
|
---|
101 | /// <param name="seed"></param>
|
---|
102 | public void Reinitialise(int seed) {
|
---|
103 | // The only stipulation stated for the xorshift RNG is that at least one of
|
---|
104 | // the seeds x,y,z,w is non-zero. We fulfill that requirement by only allowing
|
---|
105 | // resetting of the x seed
|
---|
106 | x = (uint)seed;
|
---|
107 | y = Y;
|
---|
108 | z = Z;
|
---|
109 | w = W;
|
---|
110 | }
|
---|
111 |
|
---|
112 | #endregion
|
---|
113 |
|
---|
114 | #region Public Methods [System.Random functionally equivalent methods]
|
---|
115 |
|
---|
116 | /// <summary>
|
---|
117 | /// Generates a random int over the range 0 to int.MaxValue-1.
|
---|
118 | /// MaxValue is not generated in order to remain functionally equivalent to System.Random.Next().
|
---|
119 | /// This does slightly eat into some of the performance gain over System.Random, but not much.
|
---|
120 | /// For better performance see:
|
---|
121 | ///
|
---|
122 | /// Call NextInt() for an int over the range 0 to int.MaxValue.
|
---|
123 | ///
|
---|
124 | /// Call NextUInt() and cast the result to an int to generate an int over the full Int32 value range
|
---|
125 | /// including negative values.
|
---|
126 | /// </summary>
|
---|
127 | /// <returns></returns>
|
---|
128 | public int Next() {
|
---|
129 | uint t = (x ^ (x << 11));
|
---|
130 | x = y; y = z; z = w;
|
---|
131 | w = (w ^ (w >> 19)) ^ (t ^ (t >> 8));
|
---|
132 |
|
---|
133 | // Handle the special case where the value int.MaxValue is generated. This is outside of
|
---|
134 | // the range of permitted values, so we therefore call Next() to try again.
|
---|
135 | uint rtn = w & 0x7FFFFFFF;
|
---|
136 | if (rtn == 0x7FFFFFFF)
|
---|
137 | return Next();
|
---|
138 | return (int)rtn;
|
---|
139 | }
|
---|
140 |
|
---|
141 | /// <summary>
|
---|
142 | /// Generates a random int over the range 0 to upperBound-1, and not including upperBound.
|
---|
143 | /// </summary>
|
---|
144 | /// <param name="upperBound"></param>
|
---|
145 | /// <returns></returns>
|
---|
146 | public int Next(int upperBound) {
|
---|
147 | if (upperBound < 0)
|
---|
148 | throw new ArgumentOutOfRangeException("upperBound", upperBound, "upperBound must be >=0");
|
---|
149 |
|
---|
150 | uint t = (x ^ (x << 11));
|
---|
151 | x = y; y = z; z = w;
|
---|
152 |
|
---|
153 | // The explicit int cast before the first multiplication gives better performance.
|
---|
154 | // See comments in NextDouble.
|
---|
155 | return (int)((REAL_UNIT_INT * (int)(0x7FFFFFFF & (w = (w ^ (w >> 19)) ^ (t ^ (t >> 8))))) * upperBound);
|
---|
156 | }
|
---|
157 |
|
---|
158 | /// <summary>
|
---|
159 | /// Generates a random int over the range lowerBound to upperBound-1, and not including upperBound.
|
---|
160 | /// upperBound must be >= lowerBound. lowerBound may be negative.
|
---|
161 | /// </summary>
|
---|
162 | /// <param name="lowerBound"></param>
|
---|
163 | /// <param name="upperBound"></param>
|
---|
164 | /// <returns></returns>
|
---|
165 | public int Next(int lowerBound, int upperBound) {
|
---|
166 | if (lowerBound > upperBound)
|
---|
167 | throw new ArgumentOutOfRangeException("upperBound", upperBound, "upperBound must be >=lowerBound");
|
---|
168 |
|
---|
169 | uint t = (x ^ (x << 11));
|
---|
170 | x = y; y = z; z = w;
|
---|
171 |
|
---|
172 | // The explicit int cast before the first multiplication gives better performance.
|
---|
173 | // See comments in NextDouble.
|
---|
174 | int range = upperBound - lowerBound;
|
---|
175 | if (range < 0) { // If range is <0 then an overflow has occured and must resort to using long integer arithmetic instead (slower).
|
---|
176 | // We also must use all 32 bits of precision, instead of the normal 31, which again is slower.
|
---|
177 | return lowerBound + (int)((REAL_UNIT_UINT * (double)(w = (w ^ (w >> 19)) ^ (t ^ (t >> 8)))) * (double)((long)upperBound - (long)lowerBound));
|
---|
178 | }
|
---|
179 |
|
---|
180 | // 31 bits of precision will suffice if range<=int.MaxValue. This allows us to cast to an int and gain
|
---|
181 | // a little more performance.
|
---|
182 | return lowerBound + (int)((REAL_UNIT_INT * (double)(int)(0x7FFFFFFF & (w = (w ^ (w >> 19)) ^ (t ^ (t >> 8))))) * (double)range);
|
---|
183 | }
|
---|
184 |
|
---|
185 | /// <summary>
|
---|
186 | /// Generates a random double. Values returned are from 0.0 up to but not including 1.0.
|
---|
187 | /// </summary>
|
---|
188 | /// <returns></returns>
|
---|
189 | public double NextDouble() {
|
---|
190 | uint t = (x ^ (x << 11));
|
---|
191 | x = y; y = z; z = w;
|
---|
192 |
|
---|
193 | // Here we can gain a 2x speed improvement by generating a value that can be cast to
|
---|
194 | // an int instead of the more easily available uint. If we then explicitly cast to an
|
---|
195 | // int the compiler will then cast the int to a double to perform the multiplication,
|
---|
196 | // this final cast is a lot faster than casting from a uint to a double. The extra cast
|
---|
197 | // to an int is very fast (the allocated bits remain the same) and so the overall effect
|
---|
198 | // of the extra cast is a significant performance improvement.
|
---|
199 | //
|
---|
200 | // Also note that the loss of one bit of precision is equivalent to what occurs within
|
---|
201 | // System.Random.
|
---|
202 | return (REAL_UNIT_INT * (int)(0x7FFFFFFF & (w = (w ^ (w >> 19)) ^ (t ^ (t >> 8)))));
|
---|
203 | }
|
---|
204 |
|
---|
205 |
|
---|
206 | /// <summary>
|
---|
207 | /// Fills the provided byte array with random bytes.
|
---|
208 | /// This method is functionally equivalent to System.Random.NextBytes().
|
---|
209 | /// </summary>
|
---|
210 | /// <param name="buffer"></param>
|
---|
211 | public void NextBytes(byte[] buffer) {
|
---|
212 | // Fill up the bulk of the buffer in chunks of 4 bytes at a time.
|
---|
213 | uint x = this.x, y = this.y, z = this.z, w = this.w;
|
---|
214 | int i = 0;
|
---|
215 | uint t;
|
---|
216 | for (int bound = buffer.Length - 3; i < bound; ) {
|
---|
217 | // Generate 4 bytes.
|
---|
218 | // Increased performance is achieved by generating 4 random bytes per loop.
|
---|
219 | // Also note that no mask needs to be applied to zero out the higher order bytes before
|
---|
220 | // casting because the cast ignores thos bytes. Thanks to Stefan Trosch�tz for pointing this out.
|
---|
221 | t = (x ^ (x << 11));
|
---|
222 | x = y; y = z; z = w;
|
---|
223 | w = (w ^ (w >> 19)) ^ (t ^ (t >> 8));
|
---|
224 |
|
---|
225 | buffer[i++] = (byte)w;
|
---|
226 | buffer[i++] = (byte)(w >> 8);
|
---|
227 | buffer[i++] = (byte)(w >> 16);
|
---|
228 | buffer[i++] = (byte)(w >> 24);
|
---|
229 | }
|
---|
230 |
|
---|
231 | // Fill up any remaining bytes in the buffer.
|
---|
232 | if (i < buffer.Length) {
|
---|
233 | // Generate 4 bytes.
|
---|
234 | t = (x ^ (x << 11));
|
---|
235 | x = y; y = z; z = w;
|
---|
236 | w = (w ^ (w >> 19)) ^ (t ^ (t >> 8));
|
---|
237 |
|
---|
238 | buffer[i++] = (byte)w;
|
---|
239 | if (i < buffer.Length) {
|
---|
240 | buffer[i++] = (byte)(w >> 8);
|
---|
241 | if (i < buffer.Length) {
|
---|
242 | buffer[i++] = (byte)(w >> 16);
|
---|
243 | if (i < buffer.Length) {
|
---|
244 | buffer[i] = (byte)(w >> 24);
|
---|
245 | }
|
---|
246 | }
|
---|
247 | }
|
---|
248 | }
|
---|
249 | this.x = x; this.y = y; this.z = z; this.w = w;
|
---|
250 | }
|
---|
251 |
|
---|
252 |
|
---|
253 | // /// <summary>
|
---|
254 | // /// A version of NextBytes that uses a pointer to set 4 bytes of the byte buffer in one operation
|
---|
255 | // /// thus providing a nice speedup. The loop is also partially unrolled to allow out-of-order-execution,
|
---|
256 | // /// this results in about a x2 speedup on an AMD Athlon. Thus performance may vary wildly on different CPUs
|
---|
257 | // /// depending on the number of execution units available.
|
---|
258 | // ///
|
---|
259 | // /// Another significant speedup is obtained by setting the 4 bytes by indexing pDWord (e.g. pDWord[i++]=w)
|
---|
260 | // /// instead of adjusting it dereferencing it (e.g. *pDWord++=w).
|
---|
261 | // ///
|
---|
262 | // /// Note that this routine requires the unsafe compilation flag to be specified and so is commented out by default.
|
---|
263 | // /// </summary>
|
---|
264 | // /// <param name="buffer"></param>
|
---|
265 | // public unsafe void NextBytesUnsafe(byte[] buffer)
|
---|
266 | // {
|
---|
267 | // if(buffer.Length % 8 != 0)
|
---|
268 | // throw new ArgumentException("Buffer length must be divisible by 8", "buffer");
|
---|
269 | //
|
---|
270 | // uint x=this.x, y=this.y, z=this.z, w=this.w;
|
---|
271 | //
|
---|
272 | // fixed(byte* pByte0 = buffer)
|
---|
273 | // {
|
---|
274 | // uint* pDWord = (uint*)pByte0;
|
---|
275 | // for(int i=0, len=buffer.Length>>2; i < len; i+=2)
|
---|
276 | // {
|
---|
277 | // uint t=(x^(x<<11));
|
---|
278 | // x=y; y=z; z=w;
|
---|
279 | // pDWord[i] = w = (w^(w>>19))^(t^(t>>8));
|
---|
280 | //
|
---|
281 | // t=(x^(x<<11));
|
---|
282 | // x=y; y=z; z=w;
|
---|
283 | // pDWord[i+1] = w = (w^(w>>19))^(t^(t>>8));
|
---|
284 | // }
|
---|
285 | // }
|
---|
286 | //
|
---|
287 | // this.x=x; this.y=y; this.z=z; this.w=w;
|
---|
288 | // }
|
---|
289 |
|
---|
290 | #endregion
|
---|
291 |
|
---|
292 | #region Public Methods [Methods not present on System.Random]
|
---|
293 |
|
---|
294 | /// <summary>
|
---|
295 | /// Generates a uint. Values returned are over the full range of a uint,
|
---|
296 | /// uint.MinValue to uint.MaxValue, inclusive.
|
---|
297 | ///
|
---|
298 | /// This is the fastest method for generating a single random number because the underlying
|
---|
299 | /// random number generator algorithm generates 32 random bits that can be cast directly to
|
---|
300 | /// a uint.
|
---|
301 | /// </summary>
|
---|
302 | /// <returns></returns>
|
---|
303 | public uint NextUInt() {
|
---|
304 | uint t = (x ^ (x << 11));
|
---|
305 | x = y; y = z; z = w;
|
---|
306 | return (w = (w ^ (w >> 19)) ^ (t ^ (t >> 8)));
|
---|
307 | }
|
---|
308 |
|
---|
309 | /// <summary>
|
---|
310 | /// Generates a random int over the range 0 to int.MaxValue, inclusive.
|
---|
311 | /// This method differs from Next() only in that the range is 0 to int.MaxValue
|
---|
312 | /// and not 0 to int.MaxValue-1.
|
---|
313 | ///
|
---|
314 | /// The slight difference in range means this method is slightly faster than Next()
|
---|
315 | /// but is not functionally equivalent to System.Random.Next().
|
---|
316 | /// </summary>
|
---|
317 | /// <returns></returns>
|
---|
318 | public int NextInt() {
|
---|
319 | uint t = (x ^ (x << 11));
|
---|
320 | x = y; y = z; z = w;
|
---|
321 | return (int)(0x7FFFFFFF & (w = (w ^ (w >> 19)) ^ (t ^ (t >> 8))));
|
---|
322 | }
|
---|
323 |
|
---|
324 | /// <summary>
|
---|
325 | /// Generates a single random bit.
|
---|
326 | /// This method's performance is improved by generating 32 bits in one operation and storing them
|
---|
327 | /// ready for future calls.
|
---|
328 | /// </summary>
|
---|
329 | /// <returns></returns>
|
---|
330 | public bool NextBool() {
|
---|
331 | if (bitMask == 1) {
|
---|
332 | // Generate 32 more bits.
|
---|
333 | uint t = (x ^ (x << 11));
|
---|
334 | x = y; y = z; z = w;
|
---|
335 | bitBuffer = w = (w ^ (w >> 19)) ^ (t ^ (t >> 8));
|
---|
336 |
|
---|
337 | // Reset the bitMask that tells us which bit to read next.
|
---|
338 | bitMask = 0x80000000;
|
---|
339 | return (bitBuffer & bitMask) == 0;
|
---|
340 | }
|
---|
341 | return (bitBuffer & (bitMask >>= 1)) == 0;
|
---|
342 | }
|
---|
343 | // Buffer 32 bits in bitBuffer, return 1 at a time, keep track of how many have been returned
|
---|
344 | // with bitBufferIdx.
|
---|
345 | [Storable]
|
---|
346 | private uint bitBuffer;
|
---|
347 | [Storable]
|
---|
348 | private uint bitMask = 1;
|
---|
349 |
|
---|
350 |
|
---|
351 | #endregion
|
---|
352 |
|
---|
353 | #region IRandom Members
|
---|
354 |
|
---|
355 | public void Reset() {
|
---|
356 | Reinitialise((int)Environment.TickCount);
|
---|
357 | }
|
---|
358 |
|
---|
359 | public void Reset(int seed) {
|
---|
360 | Reinitialise(seed);
|
---|
361 | }
|
---|
362 |
|
---|
363 | #endregion
|
---|
364 |
|
---|
365 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
366 | return new FastRandom(this, cloner);
|
---|
367 | }
|
---|
368 | }
|
---|
369 | }
|
---|