1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections;
|
---|
24 | using System.Collections.Generic;
|
---|
25 | using System.IO;
|
---|
26 | using System.Linq;
|
---|
27 | using HeuristicLab.Common;
|
---|
28 | using HeuristicLab.Problems.DataAnalysis;
|
---|
29 |
|
---|
30 | namespace HeuristicLab.Problems.Instances.DataAnalysis {
|
---|
31 | public class ClassificationCSVInstanceProvider : ClassificationInstanceProvider {
|
---|
32 | public override string Name {
|
---|
33 | get { return "CSV File"; }
|
---|
34 | }
|
---|
35 | public override string Description {
|
---|
36 | get {
|
---|
37 | return "";
|
---|
38 | }
|
---|
39 | }
|
---|
40 | public override Uri WebLink {
|
---|
41 | get { return new Uri("http://dev.heuristiclab.com/trac/hl/core/wiki/UsersFAQ#DataAnalysisImportFileFormat"); }
|
---|
42 | }
|
---|
43 | public override string ReferencePublication {
|
---|
44 | get { return ""; }
|
---|
45 | }
|
---|
46 |
|
---|
47 | public override IEnumerable<IDataDescriptor> GetDataDescriptors() {
|
---|
48 | return new List<IDataDescriptor>();
|
---|
49 | }
|
---|
50 |
|
---|
51 | public override IClassificationProblemData LoadData(IDataDescriptor descriptor) {
|
---|
52 | throw new NotImplementedException();
|
---|
53 | }
|
---|
54 |
|
---|
55 | public override bool CanImportData {
|
---|
56 | get { return true; }
|
---|
57 | }
|
---|
58 | public override IClassificationProblemData ImportData(string path) {
|
---|
59 | TableFileParser csvFileParser = new TableFileParser();
|
---|
60 |
|
---|
61 | csvFileParser.Parse(path);
|
---|
62 |
|
---|
63 | Dataset dataset = new Dataset(csvFileParser.VariableNames, csvFileParser.Values);
|
---|
64 | string targetVar = dataset.DoubleVariables.Last();
|
---|
65 |
|
---|
66 | // turn of input variables that are constant in the training partition
|
---|
67 | var allowedInputVars = new List<string>();
|
---|
68 | var trainingIndizes = Enumerable.Range(0, (csvFileParser.Rows * 2) / 3);
|
---|
69 | if (trainingIndizes.Count() >= 2) {
|
---|
70 | foreach (var variableName in dataset.DoubleVariables) {
|
---|
71 | if (dataset.GetDoubleValues(variableName, trainingIndizes).Range() > 0 &&
|
---|
72 | variableName != targetVar)
|
---|
73 | allowedInputVars.Add(variableName);
|
---|
74 | }
|
---|
75 | } else {
|
---|
76 | allowedInputVars.AddRange(dataset.DoubleVariables.Where(x => !x.Equals(targetVar)));
|
---|
77 | }
|
---|
78 |
|
---|
79 | ClassificationProblemData classificationData = new ClassificationProblemData(dataset, allowedInputVars, targetVar);
|
---|
80 |
|
---|
81 | int trainingPartEnd = trainingIndizes.Last();
|
---|
82 | classificationData.TrainingPartition.Start = trainingIndizes.First();
|
---|
83 | classificationData.TrainingPartition.End = trainingPartEnd;
|
---|
84 | classificationData.TestPartition.Start = trainingPartEnd;
|
---|
85 | classificationData.TestPartition.End = csvFileParser.Rows;
|
---|
86 |
|
---|
87 | classificationData.Name = Path.GetFileName(path);
|
---|
88 |
|
---|
89 | return classificationData;
|
---|
90 | }
|
---|
91 |
|
---|
92 | protected override IClassificationProblemData ImportData(string path, ClassificationImportType type, TableFileParser csvFileParser) {
|
---|
93 | int trainingPartEnd = (csvFileParser.Rows * type.TrainingPercentage) / 100;
|
---|
94 | List<IList> values = csvFileParser.Values;
|
---|
95 | if (type.Shuffle) {
|
---|
96 | values = Shuffle(values);
|
---|
97 | if (type.UniformlyDistributeClasses) {
|
---|
98 | values = Shuffle(values, csvFileParser.VariableNames.ToList().FindIndex(x => x.Equals(type.TargetVariable)),
|
---|
99 | type.TrainingPercentage, out trainingPartEnd);
|
---|
100 | }
|
---|
101 | }
|
---|
102 |
|
---|
103 | Dataset dataset = new Dataset(csvFileParser.VariableNames, values);
|
---|
104 |
|
---|
105 | // turn of input variables that are constant in the training partition
|
---|
106 | var allowedInputVars = new List<string>();
|
---|
107 | var trainingIndizes = Enumerable.Range(0, trainingPartEnd);
|
---|
108 | if (trainingIndizes.Count() >= 2) {
|
---|
109 | foreach (var variableName in dataset.DoubleVariables) {
|
---|
110 | if (dataset.GetDoubleValues(variableName, trainingIndizes).Range() > 0 &&
|
---|
111 | variableName != type.TargetVariable)
|
---|
112 | allowedInputVars.Add(variableName);
|
---|
113 | }
|
---|
114 | } else {
|
---|
115 | allowedInputVars.AddRange(dataset.DoubleVariables.Where(x => !x.Equals(type.TargetVariable)));
|
---|
116 | }
|
---|
117 |
|
---|
118 | ClassificationProblemData classificationData = new ClassificationProblemData(dataset, allowedInputVars, type.TargetVariable);
|
---|
119 |
|
---|
120 | classificationData.TrainingPartition.Start = 0;
|
---|
121 | classificationData.TrainingPartition.End = trainingPartEnd;
|
---|
122 | classificationData.TestPartition.Start = trainingPartEnd;
|
---|
123 | classificationData.TestPartition.End = csvFileParser.Rows;
|
---|
124 |
|
---|
125 | classificationData.Name = Path.GetFileName(path);
|
---|
126 |
|
---|
127 | return classificationData;
|
---|
128 | }
|
---|
129 |
|
---|
130 | protected List<IList> Shuffle(List<IList> values, int target, int trainingPercentage, out int trainingPartEnd) {
|
---|
131 | IList targetValues = values[target];
|
---|
132 | var group = targetValues.Cast<double>().GroupBy(x => x).Select(g => new { Key = g.Key, Count = g.Count() }).ToList();
|
---|
133 | Dictionary<double, double> taken = new Dictionary<double, double>();
|
---|
134 | foreach (var classCount in group) {
|
---|
135 | taken[classCount.Key] = (classCount.Count * trainingPercentage) / 100.0;
|
---|
136 | }
|
---|
137 |
|
---|
138 | List<IList> training = GetListOfIListCopy(values);
|
---|
139 | List<IList> test = GetListOfIListCopy(values);
|
---|
140 |
|
---|
141 | for (int i = 0; i < targetValues.Count; i++) {
|
---|
142 | if (taken[(double)targetValues[i]] > 0) {
|
---|
143 | AddRow(training, values, i);
|
---|
144 | taken[(double)targetValues[i]]--;
|
---|
145 | } else {
|
---|
146 | AddRow(test, values, i);
|
---|
147 | }
|
---|
148 | }
|
---|
149 |
|
---|
150 | trainingPartEnd = training.First().Count;
|
---|
151 |
|
---|
152 | for (int i = 0; i < training.Count; i++) {
|
---|
153 | for (int j = 0; j < test[i].Count; j++) {
|
---|
154 | training[i].Add(test[i][j]);
|
---|
155 | }
|
---|
156 | }
|
---|
157 |
|
---|
158 | return training;
|
---|
159 | }
|
---|
160 |
|
---|
161 | private void AddRow(List<IList> destination, List<IList> source, int index) {
|
---|
162 | for (int i = 0; i < source.Count; i++) {
|
---|
163 | destination[i].Add(source[i][index]);
|
---|
164 | }
|
---|
165 | }
|
---|
166 |
|
---|
167 | private List<IList> GetListOfIListCopy(List<IList> values) {
|
---|
168 | List<IList> newList = new List<IList>(values.Count);
|
---|
169 | foreach (IList t in values) {
|
---|
170 | if (t is List<double>)
|
---|
171 | newList.Add(new List<double>());
|
---|
172 | else if (t is List<DateTime>)
|
---|
173 | newList.Add(new List<DateTime>());
|
---|
174 | else if (t is List<string>)
|
---|
175 | newList.Add(new List<string>());
|
---|
176 | else
|
---|
177 | throw new InvalidOperationException();
|
---|
178 | }
|
---|
179 | return newList;
|
---|
180 | }
|
---|
181 | }
|
---|
182 | }
|
---|