[5630] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[7259] | 3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[5630] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Data;
|
---|
| 28 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 30 |
|
---|
| 31 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification.SingleObjective {
|
---|
| 32 | [Item("Bounded Mean squared error Evaluator", "Calculates the bounded mean squared error of a symbolic classification solution (estimations above or below the class values are only penaltilized linearly.")]
|
---|
| 33 | [StorableClass]
|
---|
[5747] | 34 | public class SymbolicClassificationSingleObjectiveBoundedMeanSquaredErrorEvaluator : SymbolicClassificationSingleObjectiveEvaluator {
|
---|
[5630] | 35 | [StorableConstructor]
|
---|
[5747] | 36 | protected SymbolicClassificationSingleObjectiveBoundedMeanSquaredErrorEvaluator(bool deserializing) : base(deserializing) { }
|
---|
| 37 | protected SymbolicClassificationSingleObjectiveBoundedMeanSquaredErrorEvaluator(SymbolicClassificationSingleObjectiveBoundedMeanSquaredErrorEvaluator original, Cloner cloner) : base(original, cloner) { }
|
---|
[5630] | 38 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
[5747] | 39 | return new SymbolicClassificationSingleObjectiveBoundedMeanSquaredErrorEvaluator(this, cloner);
|
---|
[5630] | 40 | }
|
---|
| 41 |
|
---|
[5747] | 42 | public SymbolicClassificationSingleObjectiveBoundedMeanSquaredErrorEvaluator() : base() { }
|
---|
[5630] | 43 |
|
---|
| 44 | public override bool Maximization { get { return false; } }
|
---|
| 45 |
|
---|
| 46 | public override IOperation Apply() {
|
---|
| 47 | IEnumerable<int> rows = GenerateRowsToEvaluate();
|
---|
[5851] | 48 | var solution = SymbolicExpressionTreeParameter.ActualValue;
|
---|
[9363] | 49 | double quality = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, ProblemDataParameter.ActualValue, rows, ApplyLinearScalingParameter.ActualValue.Value);
|
---|
[5630] | 50 | QualityParameter.ActualValue = new DoubleValue(quality);
|
---|
| 51 | return base.Apply();
|
---|
| 52 | }
|
---|
| 53 |
|
---|
[9363] | 54 | public static double Calculate(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, IClassificationProblemData problemData, IEnumerable<int> rows, bool applyLinearScaling) {
|
---|
[5630] | 55 | IEnumerable<double> estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, problemData.Dataset, rows);
|
---|
[9363] | 56 | IEnumerable<double> targetValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows);
|
---|
| 57 | OnlineCalculatorError errorState;
|
---|
[5630] | 58 |
|
---|
[9363] | 59 | double lowestClassValue = problemData.ClassValues.OrderBy(x => x).First();
|
---|
| 60 | double upmostClassValue = problemData.ClassValues.OrderByDescending(x => x).First();
|
---|
[5630] | 61 |
|
---|
[9363] | 62 | double boundedMse;
|
---|
| 63 | if (applyLinearScaling) {
|
---|
| 64 | var boundedMseCalculator = new OnlineBoundedMeanSquaredErrorCalculator(lowestClassValue, upmostClassValue);
|
---|
| 65 | CalculateWithScaling(targetValues, estimatedValues, lowerEstimationLimit, upperEstimationLimit, boundedMseCalculator, problemData.Dataset.Rows);
|
---|
| 66 | errorState = boundedMseCalculator.ErrorState;
|
---|
| 67 | boundedMse = boundedMseCalculator.BoundedMeanSquaredError;
|
---|
[5630] | 68 | } else {
|
---|
[9363] | 69 | IEnumerable<double> boundedEstimatedValues = estimatedValues.LimitToRange(lowerEstimationLimit, upperEstimationLimit);
|
---|
| 70 | boundedMse = OnlineBoundedMeanSquaredErrorCalculator.Calculate(targetValues, boundedEstimatedValues, lowestClassValue, upmostClassValue, out errorState);
|
---|
[5630] | 71 | }
|
---|
[9363] | 72 | if (errorState != OnlineCalculatorError.None) return Double.NaN;
|
---|
| 73 | return boundedMse;
|
---|
[5630] | 74 | }
|
---|
| 75 |
|
---|
| 76 | public override double Evaluate(IExecutionContext context, ISymbolicExpressionTree tree, IClassificationProblemData problemData, IEnumerable<int> rows) {
|
---|
[5851] | 77 | SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = context;
|
---|
| 78 | EstimationLimitsParameter.ExecutionContext = context;
|
---|
[9363] | 79 | ApplyLinearScalingParameter.ExecutionContext = context;
|
---|
[5851] | 80 |
|
---|
[9363] | 81 | double mse = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, tree, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, problemData, rows, ApplyLinearScalingParameter.ActualValue.Value);
|
---|
[5851] | 82 |
|
---|
| 83 | SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = null;
|
---|
| 84 | EstimationLimitsParameter.ExecutionContext = null;
|
---|
[9363] | 85 | ApplyLinearScalingParameter.ExecutionContext = null;
|
---|
[5851] | 86 |
|
---|
| 87 | return mse;
|
---|
[5630] | 88 | }
|
---|
| 89 | }
|
---|
| 90 | }
|
---|