Free cookie consent management tool by TermsFeed Policy Generator

source: branches/OaaS/HeuristicLab.ExtLibs/HeuristicLab.LibSVM/1.6.3/LibSVM-1.6.3/Parameter.cs @ 8464

Last change on this file since 8464 was 4068, checked in by swagner, 14 years ago

Sorted usings and removed unused usings in entire solution (#1094)

File size: 6.2 KB
Line 
1/*
2 * SVM.NET Library
3 * Copyright (C) 2008 Matthew Johnson
4 *
5 * This program is free software: you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation, either version 3 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17 */
18
19
20using System;
21using System.Collections.Generic;
22
23namespace SVM {
24  /// <summary>
25  /// Contains all of the types of SVM this library can model.
26  /// </summary>
27  public enum SvmType {
28    /// <summary>
29    /// C-SVC.
30    /// </summary>
31    C_SVC,
32    /// <summary>
33    /// nu-SVC.
34    /// </summary>
35    NU_SVC,
36    /// <summary>
37    /// one-class SVM
38    /// </summary>
39    ONE_CLASS,
40    /// <summary>
41    /// epsilon-SVR
42    /// </summary>
43    EPSILON_SVR,
44    /// <summary>
45    /// nu-SVR
46    /// </summary>
47    NU_SVR
48  };
49  /// <summary>
50  /// Contains the various kernel types this library can use.
51  /// </summary>
52  public enum KernelType {
53    /// <summary>
54    /// Linear: u'*v
55    /// </summary>
56    LINEAR,
57    /// <summary>
58    /// Polynomial: (gamma*u'*v + coef0)^degree
59    /// </summary>
60    POLY,
61    /// <summary>
62    /// Radial basis function: exp(-gamma*|u-v|^2)
63    /// </summary>
64    RBF,
65    /// <summary>
66    /// Sigmoid: tanh(gamma*u'*v + coef0)
67    /// </summary>
68    SIGMOID,
69    /// <summary>
70    /// Precomputed kernel
71    /// </summary>
72    PRECOMPUTED,
73  };
74
75  /// <summary>
76  /// This class contains the various parameters which can affect the way in which an SVM
77  /// is learned.  Unless you know what you are doing, chances are you are best off using
78  /// the default values.
79  /// </summary>
80  [Serializable]
81  public class Parameter : ICloneable {
82    private SvmType _svmType;
83    private KernelType _kernelType;
84    private int _degree;
85    private double _gamma;
86    private double _coef0;
87
88    private double _cacheSize;
89    private double _C;
90    private double _eps;
91
92    private Dictionary<int, double> _weights;
93    private double _nu;
94    private double _p;
95    private bool _shrinking;
96    private bool _probability;
97
98    /// <summary>
99    /// Default Constructor.  Gives good default values to all parameters.
100    /// </summary>
101    public Parameter() {
102      _svmType = SvmType.C_SVC;
103      _kernelType = KernelType.RBF;
104      _degree = 3;
105      _gamma = 0; // 1/k
106      _coef0 = 0;
107      _nu = 0.5;
108      _cacheSize = 40;
109      _C = 1;
110      _eps = 1e-3;
111      _p = 0.1;
112      _shrinking = true;
113      _probability = false;
114      _weights = new Dictionary<int, double>();
115    }
116
117    /// <summary>
118    /// Type of SVM (default C-SVC)
119    /// </summary>
120    public SvmType SvmType {
121      get {
122        return _svmType;
123      }
124      set {
125        _svmType = value;
126      }
127    }
128    /// <summary>
129    /// Type of kernel function (default Polynomial)
130    /// </summary>
131    public KernelType KernelType {
132      get {
133        return _kernelType;
134      }
135      set {
136        _kernelType = value;
137      }
138    }
139    /// <summary>
140    /// Degree in kernel function (default 3).
141    /// </summary>
142    public int Degree {
143      get {
144        return _degree;
145      }
146      set {
147        _degree = value;
148      }
149    }
150    /// <summary>
151    /// Gamma in kernel function (default 1/k)
152    /// </summary>
153    public double Gamma {
154      get {
155        return _gamma;
156      }
157      set {
158        _gamma = value;
159      }
160    }
161    /// <summary>
162    /// Zeroeth coefficient in kernel function (default 0)
163    /// </summary>
164    public double Coefficient0 {
165      get {
166        return _coef0;
167      }
168      set {
169        _coef0 = value;
170      }
171    }
172
173    /// <summary>
174    /// Cache memory size in MB (default 100)
175    /// </summary>
176    public double CacheSize {
177      get {
178        return _cacheSize;
179      }
180      set {
181        _cacheSize = value;
182      }
183    }
184    /// <summary>
185    /// Tolerance of termination criterion (default 0.001)
186    /// </summary>
187    public double EPS {
188      get {
189        return _eps;
190      }
191      set {
192        _eps = value;
193      }
194    }
195    /// <summary>
196    /// The parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)
197    /// </summary>
198    public double C {
199      get {
200        return _C;
201      }
202      set {
203        _C = value;
204      }
205    }
206
207    /// <summary>
208    /// Contains custom weights for class labels.  Default weight value is 1.
209    /// </summary>
210    public Dictionary<int, double> Weights {
211      get {
212        return _weights;
213      }
214    }
215
216    /// <summary>
217    /// The parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)
218    /// </summary>
219    public double Nu {
220      get {
221        return _nu;
222      }
223      set {
224        _nu = value;
225      }
226    }
227    /// <summary>
228    /// The epsilon in loss function of epsilon-SVR (default 0.1)
229    /// </summary>
230    public double P {
231      get {
232        return _p;
233      }
234      set {
235        _p = value;
236      }
237    }
238    /// <summary>
239    /// Whether to use the shrinking heuristics, (default True)
240    /// </summary>
241    public bool Shrinking {
242      get {
243        return _shrinking;
244      }
245      set {
246        _shrinking = value;
247      }
248    }
249    /// <summary>
250    /// Whether to train an SVC or SVR model for probability estimates, (default False)
251    /// </summary>
252    public bool Probability {
253      get {
254        return _probability;
255      }
256      set {
257        _probability = value;
258      }
259    }
260
261
262    #region ICloneable Members
263    /// <summary>
264    /// Creates a memberwise clone of this parameters object.
265    /// </summary>
266    /// <returns>The clone (as type Parameter)</returns>
267    public object Clone() {
268      return base.MemberwiseClone();
269    }
270
271    #endregion
272  }
273}
Note: See TracBrowser for help on using the repository browser.