1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using HeuristicLab.Common;
|
---|
24 | using HeuristicLab.Core;
|
---|
25 | using HeuristicLab.Data;
|
---|
26 | using HeuristicLab.Optimization;
|
---|
27 | using HeuristicLab.Parameters;
|
---|
28 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
29 | using HeuristicLab.Random;
|
---|
30 |
|
---|
31 | namespace HeuristicLab.Encodings.IntegerVectorEncoding {
|
---|
32 | /// <summary>
|
---|
33 | /// Manipulates each dimension in the integer vector with the mutation strength given
|
---|
34 | /// in the strategy parameter vector.
|
---|
35 | /// </summary>
|
---|
36 | [Item("SelfAdaptiveRoundedNormalAllPositionsManipulator", "This manipulation operator adds a value sigma_i * N(0,1) to the current value in each position i. The resulting value is rounded to the next feasible value. The values for sigma_i are looked up dynamically. If there are less elements in the strategy vector than positions, then the strategy vector is cycled.")]
|
---|
37 | [StorableClass]
|
---|
38 | public class SelfAdaptiveRoundedNormalAllPositionsManipulator : BoundedIntegerVectorManipulator, ISelfAdaptiveManipulator {
|
---|
39 | public Type StrategyParameterType {
|
---|
40 | get { return typeof(IIntegerVectorStdDevStrategyParameterOperator); }
|
---|
41 | }
|
---|
42 | /// <summary>
|
---|
43 | /// Parameter for the strategy vector.
|
---|
44 | /// </summary>
|
---|
45 | public ILookupParameter<DoubleArray> StrategyParameterParameter {
|
---|
46 | get { return (ILookupParameter<DoubleArray>)Parameters["StrategyParameter"]; }
|
---|
47 | }
|
---|
48 |
|
---|
49 | IParameter ISelfAdaptiveManipulator.StrategyParameterParameter {
|
---|
50 | get { return StrategyParameterParameter; }
|
---|
51 | }
|
---|
52 |
|
---|
53 | [StorableConstructor]
|
---|
54 | protected SelfAdaptiveRoundedNormalAllPositionsManipulator(bool deserializing) : base(deserializing) { }
|
---|
55 | protected SelfAdaptiveRoundedNormalAllPositionsManipulator(SelfAdaptiveRoundedNormalAllPositionsManipulator original, Cloner cloner) : base(original, cloner) { }
|
---|
56 | /// <summary>
|
---|
57 | /// Initializes a new instance of <see cref="SelfAdaptiveRoundedNormalAllPositionsManipulator"/> with one.
|
---|
58 | /// </summary>
|
---|
59 | public SelfAdaptiveRoundedNormalAllPositionsManipulator()
|
---|
60 | : base() {
|
---|
61 | Parameters.Add(new LookupParameter<DoubleArray>("StrategyParameter", "The vector containing the endogenous strategy parameters."));
|
---|
62 | }
|
---|
63 |
|
---|
64 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
65 | return new SelfAdaptiveRoundedNormalAllPositionsManipulator(this, cloner);
|
---|
66 | }
|
---|
67 |
|
---|
68 | /// <summary>
|
---|
69 | /// Performs an adaptive normally distributed all position manipulation on the given
|
---|
70 | /// <paramref name="vector"/> and rounding the results to the next feasible value.
|
---|
71 | /// </summary>
|
---|
72 | /// <exception cref="InvalidOperationException">Thrown when the strategy vector is not
|
---|
73 | /// as long as the vector to get manipulated.</exception>
|
---|
74 | /// <param name="strategyParameters">The strategy vector determining the strength of the mutation.</param>
|
---|
75 | /// <param name="random">A random number generator.</param>
|
---|
76 | /// <param name="vector">The integer vector to manipulate.</param>
|
---|
77 | /// <param name="bounds">The bounds and step size for each dimension (will be cycled in case there are less rows than elements in the parent vectors).</param>
|
---|
78 | public static void Apply(IRandom random, IntegerVector vector, IntMatrix bounds, DoubleArray strategyParameters) {
|
---|
79 | if (strategyParameters == null || strategyParameters.Length == 0) throw new ArgumentException("SelfAdaptiveRoundedNormalAllPositionsManipulator: Vector containing the standard deviations is not defined.", "sigma");
|
---|
80 | if (bounds == null || bounds.Rows == 0 || bounds.Columns < 2) throw new ArgumentException("SelfAdaptiveRoundedNormalAllPositionsManipulator: Invalid bounds specified.", "bounds");
|
---|
81 | var N = new NormalDistributedRandom(random, 0.0, 1.0);
|
---|
82 | if (strategyParameters != null) {
|
---|
83 | for (int i = 0; i < vector.Length; i++) {
|
---|
84 | int min = bounds[i % bounds.Rows, 0], max = bounds[i % bounds.Rows, 1], step = 1;
|
---|
85 | if (bounds.Columns > 2) step = bounds[i % bounds.Rows, 2];
|
---|
86 |
|
---|
87 | int value = (vector[i] + (int)Math.Round((N.NextDouble() * strategyParameters[i % strategyParameters.Length])) - min) / step;
|
---|
88 | vector[i] = RoundFeasible(min, max, step, value);
|
---|
89 | }
|
---|
90 | }
|
---|
91 | }
|
---|
92 |
|
---|
93 | /// <summary>
|
---|
94 | /// Checks that the strategy vector is not null and forwards the call to the static Apply method.
|
---|
95 | /// </summary>
|
---|
96 | /// <param name="random">The random number generator.</param>
|
---|
97 | /// <param name="vector">The vector of integer values that is manipulated.</param>
|
---|
98 | /// <param name="bounds">The bounds and step size for each dimension (will be cycled in case there are less rows than elements in the parent vectors).</param>
|
---|
99 | protected override void ManipulateBounded(IRandom random, IntegerVector vector, IntMatrix bounds) {
|
---|
100 | Apply(random, vector, bounds, StrategyParameterParameter.ActualValue);
|
---|
101 | }
|
---|
102 | }
|
---|
103 | }
|
---|