1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using HeuristicLab.Common;
|
---|
23 | using HeuristicLab.Core;
|
---|
24 | using HeuristicLab.Data;
|
---|
25 | using HeuristicLab.Operators;
|
---|
26 | using HeuristicLab.Optimization;
|
---|
27 | using HeuristicLab.Parameters;
|
---|
28 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
29 | using HeuristicLab.Problems.DataAnalysis;
|
---|
30 |
|
---|
31 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
32 | [StorableClass]
|
---|
33 | [Item(Name = "GaussianProcessClassificationSolutionCreator",
|
---|
34 | Description = "Creates a Gaussian process solution from a trained model.")]
|
---|
35 | public sealed class GaussianProcessClassificationSolutionCreator : SingleSuccessorOperator {
|
---|
36 | private const string ProblemDataParameterName = "ProblemData";
|
---|
37 | private const string ModelParameterName = "GaussianProcessClassificationModel";
|
---|
38 | private const string SolutionParameterName = "Solution";
|
---|
39 | private const string ResultsParameterName = "Results";
|
---|
40 | private const string TrainingAccuracyResultName = "Accuracy (training)";
|
---|
41 | private const string TestAccuracyResultName = "Accuracy (test)";
|
---|
42 |
|
---|
43 | #region Parameter Properties
|
---|
44 | public ILookupParameter<IClassificationProblemData> ProblemDataParameter {
|
---|
45 | get { return (ILookupParameter<IClassificationProblemData>)Parameters[ProblemDataParameterName]; }
|
---|
46 | }
|
---|
47 | public ILookupParameter<IDiscriminantFunctionClassificationSolution> SolutionParameter {
|
---|
48 | get { return (ILookupParameter<IDiscriminantFunctionClassificationSolution>)Parameters[SolutionParameterName]; }
|
---|
49 | }
|
---|
50 | public ILookupParameter<IGaussianProcessModel> ModelParameter {
|
---|
51 | get { return (ILookupParameter<IGaussianProcessModel>)Parameters[ModelParameterName]; }
|
---|
52 | }
|
---|
53 | public ILookupParameter<ResultCollection> ResultsParameter {
|
---|
54 | get { return (ILookupParameter<ResultCollection>)Parameters[ResultsParameterName]; }
|
---|
55 | }
|
---|
56 | #endregion
|
---|
57 |
|
---|
58 | [StorableConstructor]
|
---|
59 | private GaussianProcessClassificationSolutionCreator(bool deserializing) : base(deserializing) { }
|
---|
60 | private GaussianProcessClassificationSolutionCreator(GaussianProcessClassificationSolutionCreator original, Cloner cloner) : base(original, cloner) { }
|
---|
61 | public GaussianProcessClassificationSolutionCreator()
|
---|
62 | : base() {
|
---|
63 | // in
|
---|
64 | Parameters.Add(new LookupParameter<IClassificationProblemData>(ProblemDataParameterName, "The classification problem data for the Gaussian process solution."));
|
---|
65 | Parameters.Add(new LookupParameter<IGaussianProcessModel>(ModelParameterName, "The Gaussian process classification model to use for the solution."));
|
---|
66 | // in & out
|
---|
67 | Parameters.Add(new LookupParameter<ResultCollection>(ResultsParameterName, "The result collection of the algorithm."));
|
---|
68 | // out
|
---|
69 | Parameters.Add(new LookupParameter<IDiscriminantFunctionClassificationSolution>(SolutionParameterName, "The produced Gaussian process solution."));
|
---|
70 | }
|
---|
71 |
|
---|
72 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
73 | return new GaussianProcessClassificationSolutionCreator(this, cloner);
|
---|
74 | }
|
---|
75 |
|
---|
76 | public override IOperation Apply() {
|
---|
77 | if (ModelParameter.ActualValue != null) {
|
---|
78 | var m = (IGaussianProcessModel)ModelParameter.ActualValue.Clone();
|
---|
79 | m.FixParameters();
|
---|
80 | var data = (IClassificationProblemData)ProblemDataParameter.ActualValue.Clone();
|
---|
81 | var model = new DiscriminantFunctionClassificationModel(m, new NormalDistributionCutPointsThresholdCalculator());
|
---|
82 | model.RecalculateModelParameters(data, data.TrainingIndices);
|
---|
83 | var s = model.CreateDiscriminantFunctionClassificationSolution(data);
|
---|
84 |
|
---|
85 | SolutionParameter.ActualValue = s;
|
---|
86 | var results = ResultsParameter.ActualValue;
|
---|
87 | if (!results.ContainsKey(SolutionParameterName)) {
|
---|
88 | results.Add(new Result(SolutionParameterName, "The Gaussian process classification solution", s));
|
---|
89 | results.Add(new Result(TrainingAccuracyResultName,
|
---|
90 | "The accuracy of the Gaussian process solution on the training partition.",
|
---|
91 | new DoubleValue(s.TrainingAccuracy)));
|
---|
92 | results.Add(new Result(TestAccuracyResultName,
|
---|
93 | "The accuracy of the Gaussian process solution on the test partition.",
|
---|
94 | new DoubleValue(s.TestAccuracy)));
|
---|
95 | } else {
|
---|
96 | results[SolutionParameterName].Value = s;
|
---|
97 | results[TrainingAccuracyResultName].Value = new DoubleValue(s.TrainingAccuracy);
|
---|
98 | results[TestAccuracyResultName].Value = new DoubleValue(s.TestAccuracy);
|
---|
99 | }
|
---|
100 | }
|
---|
101 | return base.Apply();
|
---|
102 | }
|
---|
103 | }
|
---|
104 | }
|
---|