Free cookie consent management tool by TermsFeed Policy Generator

source: branches/OaaS/HeuristicLab.Algorithms.DataAnalysis/3.4/GaussianProcess/GaussianProcessClassificationSolutionCreator.cs @ 10785

Last change on this file since 10785 was 8982, checked in by gkronber, 12 years ago

#1902: removed class HyperParameter and changed implementations of covariance and mean functions to remove the parameter value caching and event handlers for parameter caching. Instead it is now possible to create the actual covariance and mean functions as Func from templates and specified parameter values. The instances of mean and covariance functions configured in the GUI are actually templates where the structure and fixed parameters can be specified.

File size: 5.3 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using HeuristicLab.Common;
23using HeuristicLab.Core;
24using HeuristicLab.Data;
25using HeuristicLab.Operators;
26using HeuristicLab.Optimization;
27using HeuristicLab.Parameters;
28using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
29using HeuristicLab.Problems.DataAnalysis;
30
31namespace HeuristicLab.Algorithms.DataAnalysis {
32  [StorableClass]
33  [Item(Name = "GaussianProcessClassificationSolutionCreator",
34    Description = "Creates a Gaussian process solution from a trained model.")]
35  public sealed class GaussianProcessClassificationSolutionCreator : SingleSuccessorOperator {
36    private const string ProblemDataParameterName = "ProblemData";
37    private const string ModelParameterName = "GaussianProcessClassificationModel";
38    private const string SolutionParameterName = "Solution";
39    private const string ResultsParameterName = "Results";
40    private const string TrainingAccuracyResultName = "Accuracy (training)";
41    private const string TestAccuracyResultName = "Accuracy (test)";
42
43    #region Parameter Properties
44    public ILookupParameter<IClassificationProblemData> ProblemDataParameter {
45      get { return (ILookupParameter<IClassificationProblemData>)Parameters[ProblemDataParameterName]; }
46    }
47    public ILookupParameter<IDiscriminantFunctionClassificationSolution> SolutionParameter {
48      get { return (ILookupParameter<IDiscriminantFunctionClassificationSolution>)Parameters[SolutionParameterName]; }
49    }
50    public ILookupParameter<IGaussianProcessModel> ModelParameter {
51      get { return (ILookupParameter<IGaussianProcessModel>)Parameters[ModelParameterName]; }
52    }
53    public ILookupParameter<ResultCollection> ResultsParameter {
54      get { return (ILookupParameter<ResultCollection>)Parameters[ResultsParameterName]; }
55    }
56    #endregion
57
58    [StorableConstructor]
59    private GaussianProcessClassificationSolutionCreator(bool deserializing) : base(deserializing) { }
60    private GaussianProcessClassificationSolutionCreator(GaussianProcessClassificationSolutionCreator original, Cloner cloner) : base(original, cloner) { }
61    public GaussianProcessClassificationSolutionCreator()
62      : base() {
63      // in
64      Parameters.Add(new LookupParameter<IClassificationProblemData>(ProblemDataParameterName, "The classification problem data for the Gaussian process solution."));
65      Parameters.Add(new LookupParameter<IGaussianProcessModel>(ModelParameterName, "The Gaussian process classification model to use for the solution."));
66      // in & out
67      Parameters.Add(new LookupParameter<ResultCollection>(ResultsParameterName, "The result collection of the algorithm."));
68      // out
69      Parameters.Add(new LookupParameter<IDiscriminantFunctionClassificationSolution>(SolutionParameterName, "The produced Gaussian process solution."));
70    }
71
72    public override IDeepCloneable Clone(Cloner cloner) {
73      return new GaussianProcessClassificationSolutionCreator(this, cloner);
74    }
75
76    public override IOperation Apply() {
77      if (ModelParameter.ActualValue != null) {
78        var m = (IGaussianProcessModel)ModelParameter.ActualValue.Clone();
79        m.FixParameters();
80        var data = (IClassificationProblemData)ProblemDataParameter.ActualValue.Clone();
81        var model = new DiscriminantFunctionClassificationModel(m, new NormalDistributionCutPointsThresholdCalculator());
82        model.RecalculateModelParameters(data, data.TrainingIndices);
83        var s = model.CreateDiscriminantFunctionClassificationSolution(data);
84
85        SolutionParameter.ActualValue = s;
86        var results = ResultsParameter.ActualValue;
87        if (!results.ContainsKey(SolutionParameterName)) {
88          results.Add(new Result(SolutionParameterName, "The Gaussian process classification solution", s));
89          results.Add(new Result(TrainingAccuracyResultName,
90                                 "The accuracy of the Gaussian process solution on the training partition.",
91                                 new DoubleValue(s.TrainingAccuracy)));
92          results.Add(new Result(TestAccuracyResultName,
93                                 "The accuracy of the Gaussian process solution on the test partition.",
94                                 new DoubleValue(s.TestAccuracy)));
95        } else {
96          results[SolutionParameterName].Value = s;
97          results[TrainingAccuracyResultName].Value = new DoubleValue(s.TrainingAccuracy);
98          results[TestAccuracyResultName].Value = new DoubleValue(s.TestAccuracy);
99        }
100      }
101      return base.Apply();
102    }
103  }
104}
Note: See TracBrowser for help on using the repository browser.