1 | package ec.vector; |
---|
2 | |
---|
3 | import ec.*; |
---|
4 | import ec.util.*; |
---|
5 | |
---|
6 | import java.io.*; |
---|
7 | |
---|
8 | /* |
---|
9 | * FloatVectorIndividual.java |
---|
10 | * Created: Thu Mar 22 13:13:20 EST 2001 |
---|
11 | */ |
---|
12 | |
---|
13 | /** |
---|
14 | * FloatVectorIndividual is a VectorIndividual whose genome is an array of |
---|
15 | * floats. Gene values may range from species.mingene(x) to species.maxgene(x), |
---|
16 | * inclusive. The default mutation method randomizes genes to new values in this |
---|
17 | * range, with <tt>species.mutationProbability</tt>. It can also add gaussian noise |
---|
18 | * to the genes, if so directed in the FloatVectorSpecies. If the gaussian noise |
---|
19 | * pushes the gene out of range, a new noise value is generated. |
---|
20 | * |
---|
21 | * |
---|
22 | * <p> |
---|
23 | * <P><b>From ec.Individual:</b> |
---|
24 | * |
---|
25 | * <p>In addition to serialization for checkpointing, Individuals may read and write themselves to streams in three ways. |
---|
26 | * |
---|
27 | * <ul> |
---|
28 | * <li><b>writeIndividual(...,DataOutput)/readIndividual(...,DataInput)</b> This method |
---|
29 | * transmits or receives an individual in binary. It is the most efficient approach to sending |
---|
30 | * individuals over networks, etc. These methods write the evaluated flag and the fitness, then |
---|
31 | * call <b>readGenotype/writeGenotype</b>, which you must implement to write those parts of your |
---|
32 | * Individual special to your functions-- the default versions of readGenotype/writeGenotype throw errors. |
---|
33 | * You don't need to implement them if you don't plan on using read/writeIndividual. |
---|
34 | * |
---|
35 | * <li><b>printIndividual(...,PrintWriter)/readIndividual(...,LineNumberReader)</b> This |
---|
36 | * approach transmits or receives an indivdual in text encoded such that the individual is largely readable |
---|
37 | * by humans but can be read back in 100% by ECJ as well. To do this, these methods will encode numbers |
---|
38 | * using the <tt>ec.util.Code</tt> class. These methods are mostly used to write out populations to |
---|
39 | * files for inspection, slight modification, then reading back in later on. <b>readIndividual</b> reads |
---|
40 | * in the fitness and the evaluation flag, then calls <b>parseGenotype</b> to read in the remaining individual. |
---|
41 | * You are responsible for implementing parseGenotype: the Code class is there to help you. |
---|
42 | * <b>printIndividual</b> writes out the fitness and evaluation flag, then calls <b>genotypeToString</b> |
---|
43 | * and printlns the resultant string. You are responsible for implementing the genotypeToString method in such |
---|
44 | * a way that parseGenotype can read back in the individual println'd with genotypeToString. The default form |
---|
45 | * of genotypeToString simply calls <b>toString</b>, which you may override instead if you like. The default |
---|
46 | * form of <b>parseGenotype</b> throws an error. You are not required to implement these methods, but without |
---|
47 | * them you will not be able to write individuals to files in a simultaneously computer- and human-readable fashion. |
---|
48 | * |
---|
49 | * <li><b>printIndividualForHumans(...,PrintWriter)</b> This |
---|
50 | * approach prints an individual in a fashion intended for human consumption only. |
---|
51 | * <b>printIndividualForHumans</b> writes out the fitness and evaluation flag, then calls <b>genotypeToStringForHumans</b> |
---|
52 | * and printlns the resultant string. You are responsible for implementing the genotypeToStringForHumans method. |
---|
53 | * The default form of genotypeToStringForHumans simply calls <b>toString</b>, which you may override instead if you like |
---|
54 | * (though note that genotypeToString's default also calls toString). You should handle one of these methods properly |
---|
55 | * to ensure individuals can be printed by ECJ. |
---|
56 | * </ul> |
---|
57 | |
---|
58 | * <p>In general, the various readers and writers do three things: they tell the Fitness to read/write itself, |
---|
59 | * they read/write the evaluated flag, and they read/write the gene array. If you add instance variables to |
---|
60 | * a VectorIndividual or subclass, you'll need to read/write those variables as well. |
---|
61 | * <b>Default Base</b><br> |
---|
62 | * vector.float-vect-ind |
---|
63 | * |
---|
64 | * @author Liviu Panait |
---|
65 | * @version 2.0 |
---|
66 | */ |
---|
67 | |
---|
68 | public class FloatVectorIndividual extends VectorIndividual |
---|
69 | { |
---|
70 | public static final String P_FLOATVECTORINDIVIDUAL = "float-vect-ind"; |
---|
71 | |
---|
72 | public float[] genome; |
---|
73 | |
---|
74 | public Parameter defaultBase() |
---|
75 | { |
---|
76 | return VectorDefaults.base().push(P_FLOATVECTORINDIVIDUAL); |
---|
77 | } |
---|
78 | |
---|
79 | public Object clone() |
---|
80 | { |
---|
81 | FloatVectorIndividual myobj = (FloatVectorIndividual) (super.clone()); |
---|
82 | |
---|
83 | // must clone the genome |
---|
84 | myobj.genome = (float[]) (genome.clone()); |
---|
85 | |
---|
86 | return myobj; |
---|
87 | } |
---|
88 | |
---|
89 | public void setup(final EvolutionState state, final Parameter base) |
---|
90 | { |
---|
91 | super.setup(state, base); // actually unnecessary (Individual.setup() |
---|
92 | // is empty) |
---|
93 | |
---|
94 | // since VectorSpecies set its constraint values BEFORE it called |
---|
95 | // super.setup(...) [which in turn called our setup(...)], we know that |
---|
96 | // stuff like genomeSize has already been set... |
---|
97 | |
---|
98 | Parameter def = defaultBase(); |
---|
99 | |
---|
100 | if (!(species instanceof FloatVectorSpecies)) |
---|
101 | state.output.fatal( |
---|
102 | "FloatVectorIndividual requires an FloatVectorSpecies", |
---|
103 | base, def); |
---|
104 | FloatVectorSpecies s = (FloatVectorSpecies) species; |
---|
105 | |
---|
106 | genome = new float[s.genomeSize]; |
---|
107 | } |
---|
108 | |
---|
109 | public void defaultCrossover(EvolutionState state, int thread, |
---|
110 | VectorIndividual ind) |
---|
111 | { |
---|
112 | FloatVectorSpecies s = (FloatVectorSpecies) species; |
---|
113 | FloatVectorIndividual i = (FloatVectorIndividual) ind; |
---|
114 | float tmp; |
---|
115 | int point; |
---|
116 | |
---|
117 | if (genome.length != i.genome.length) |
---|
118 | state.output |
---|
119 | .fatal("Genome lengths are not the same for fixed-length vector crossover"); |
---|
120 | switch (s.crossoverType) |
---|
121 | { |
---|
122 | case VectorSpecies.C_ONE_POINT: |
---|
123 | point = state.random[thread] |
---|
124 | .nextInt((genome.length / s.chunksize) + 1); |
---|
125 | for (int x = 0; x < point * s.chunksize; x++) |
---|
126 | { |
---|
127 | tmp = i.genome[x]; |
---|
128 | i.genome[x] = genome[x]; |
---|
129 | genome[x] = tmp; |
---|
130 | } |
---|
131 | break; |
---|
132 | case VectorSpecies.C_TWO_POINT: |
---|
133 | int point0 = state.random[thread] |
---|
134 | .nextInt((genome.length / s.chunksize) + 1); |
---|
135 | point = state.random[thread] |
---|
136 | .nextInt((genome.length / s.chunksize) + 1); |
---|
137 | if (point0 > point) |
---|
138 | { |
---|
139 | int p = point0; |
---|
140 | point0 = point; |
---|
141 | point = p; |
---|
142 | } |
---|
143 | for (int x = point0 * s.chunksize; x < point * s.chunksize; x++) |
---|
144 | { |
---|
145 | tmp = i.genome[x]; |
---|
146 | i.genome[x] = genome[x]; |
---|
147 | genome[x] = tmp; |
---|
148 | } |
---|
149 | break; |
---|
150 | case VectorSpecies.C_ANY_POINT: |
---|
151 | for (int x = 0; x < genome.length / s.chunksize; x++) |
---|
152 | if (state.random[thread].nextBoolean(s.crossoverProbability)) |
---|
153 | for (int y = x * s.chunksize; y < (x + 1) * s.chunksize; y++) |
---|
154 | { |
---|
155 | tmp = i.genome[y]; |
---|
156 | i.genome[y] = genome[y]; |
---|
157 | genome[y] = tmp; |
---|
158 | } |
---|
159 | break; |
---|
160 | case VectorSpecies.C_LINE_RECOMB: |
---|
161 | { |
---|
162 | double alpha = state.random[thread].nextDouble() * (1 + 2*s.lineDistance) - s.lineDistance; |
---|
163 | double beta = state.random[thread].nextDouble() * (1 + 2*s.lineDistance) - s.lineDistance; |
---|
164 | double t,u,min,max; |
---|
165 | for (int x = 0; x < genome.length; x++) |
---|
166 | { |
---|
167 | min = s.minGene(x); |
---|
168 | max = s.maxGene(x); |
---|
169 | t = alpha * genome[x] + (1 - alpha) * i.genome[x]; |
---|
170 | u = beta * i.genome[x] + (1 - beta) * genome[x]; |
---|
171 | if (!(t < min || t > max || u < min || u > max)) |
---|
172 | { |
---|
173 | genome[x] = (float)t; |
---|
174 | i.genome[x] = (float)u; |
---|
175 | } |
---|
176 | } |
---|
177 | } |
---|
178 | break; |
---|
179 | case VectorSpecies.C_INTERMED_RECOMB: |
---|
180 | { |
---|
181 | double t,u,min,max; |
---|
182 | for (int x = 0; x < genome.length; x++) |
---|
183 | { |
---|
184 | do |
---|
185 | { |
---|
186 | double alpha = state.random[thread].nextDouble() * (1 + 2*s.lineDistance) - s.lineDistance; |
---|
187 | double beta = state.random[thread].nextDouble() * (1 + 2*s.lineDistance) - s.lineDistance; |
---|
188 | min = s.minGene(x); |
---|
189 | max = s.maxGene(x); |
---|
190 | t = alpha * genome[x] + (1 - alpha) * i.genome[x]; |
---|
191 | u = beta * i.genome[x] + (1 - beta) * genome[x]; |
---|
192 | } while (t < min || t > max || u < min || u > max); |
---|
193 | genome[x] = (float)t; |
---|
194 | i.genome[x] = (float)u; |
---|
195 | } |
---|
196 | } |
---|
197 | break; |
---|
198 | case VectorSpecies.C_SIMULATED_BINARY: |
---|
199 | { |
---|
200 | simulatedBinaryCrossover(state.random[thread], i, s.crossoverDistributionIndex); |
---|
201 | } |
---|
202 | break; |
---|
203 | } |
---|
204 | } |
---|
205 | |
---|
206 | |
---|
207 | public void simulatedBinaryCrossover(MersenneTwisterFast random, FloatVectorIndividual other, double eta_c) |
---|
208 | { |
---|
209 | final double EPS = FloatVectorSpecies.SIMULATED_BINARY_CROSSOVER_EPS; |
---|
210 | FloatVectorSpecies s = (FloatVectorSpecies) species; |
---|
211 | float[] parent1 = genome; |
---|
212 | float[] parent2 = other.genome; |
---|
213 | double[] min_realvar = s.minGenes; |
---|
214 | double[] max_realvar = s.maxGenes; |
---|
215 | |
---|
216 | double y1, y2, yl, yu; |
---|
217 | double c1, c2; |
---|
218 | double alpha, beta, betaq; |
---|
219 | double rand; |
---|
220 | |
---|
221 | for(int i = 0; i < parent1.length; i++) |
---|
222 | { |
---|
223 | if (random.nextBoolean()) // 0.5f |
---|
224 | { |
---|
225 | if (Math.abs(parent1[i] - parent2[i]) > EPS) |
---|
226 | { |
---|
227 | if (parent1[i] < parent2[i]) |
---|
228 | { |
---|
229 | y1 = parent1[i]; |
---|
230 | y2 = parent2[i]; |
---|
231 | } |
---|
232 | else |
---|
233 | { |
---|
234 | y1 = parent2[i]; |
---|
235 | y2 = parent1[i]; |
---|
236 | } |
---|
237 | yl = min_realvar[i]; |
---|
238 | yu = max_realvar[i]; |
---|
239 | rand = random.nextDouble(); |
---|
240 | beta = 1.0 + (2.0*(y1-yl)/(y2-y1)); |
---|
241 | alpha = 2.0 - Math.pow(beta,-(eta_c+1.0)); |
---|
242 | if (rand <= (1.0/alpha)) |
---|
243 | { |
---|
244 | betaq = Math.pow((rand*alpha),(1.0/(eta_c+1.0))); |
---|
245 | } |
---|
246 | else |
---|
247 | { |
---|
248 | betaq = Math.pow((1.0/(2.0 - rand*alpha)),(1.0/(eta_c+1.0))); |
---|
249 | } |
---|
250 | c1 = 0.5*((y1+y2)-betaq*(y2-y1)); |
---|
251 | beta = 1.0 + (2.0*(yu-y2)/(y2-y1)); |
---|
252 | alpha = 2.0 - Math.pow(beta,-(eta_c+1.0)); |
---|
253 | if (rand <= (1.0/alpha)) |
---|
254 | { |
---|
255 | betaq = Math.pow((rand*alpha),(1.0/(eta_c+1.0))); |
---|
256 | } |
---|
257 | else |
---|
258 | { |
---|
259 | betaq = Math.pow((1.0/(2.0 - rand*alpha)),(1.0/(eta_c+1.0))); |
---|
260 | } |
---|
261 | c2 = 0.5*((y1+y2)+betaq*(y2-y1)); |
---|
262 | if (c1<yl) |
---|
263 | c1=yl; |
---|
264 | if (c2<yl) |
---|
265 | c2=yl; |
---|
266 | if (c1>yu) |
---|
267 | c1=yu; |
---|
268 | if (c2>yu) |
---|
269 | c2=yu; |
---|
270 | if (random.nextBoolean()) |
---|
271 | { |
---|
272 | parent1[i] = (float)c2; |
---|
273 | parent2[i] = (float)c1; |
---|
274 | } |
---|
275 | else |
---|
276 | { |
---|
277 | parent1[i] = (float)c1; |
---|
278 | parent2[i] = (float)c2; |
---|
279 | } |
---|
280 | } |
---|
281 | else |
---|
282 | { |
---|
283 | // do nothing |
---|
284 | } |
---|
285 | } |
---|
286 | else |
---|
287 | { |
---|
288 | // do nothing |
---|
289 | } |
---|
290 | } |
---|
291 | } |
---|
292 | |
---|
293 | |
---|
294 | |
---|
295 | |
---|
296 | |
---|
297 | |
---|
298 | |
---|
299 | |
---|
300 | /** |
---|
301 | * Splits the genome into n pieces, according to points, which *must* be |
---|
302 | * sorted. pieces.length must be 1 + points.length |
---|
303 | */ |
---|
304 | public void split(int[] points, Object[] pieces) |
---|
305 | { |
---|
306 | int point0, point1; |
---|
307 | point0 = 0; |
---|
308 | point1 = points[0]; |
---|
309 | for (int x = 0; x < pieces.length; x++) |
---|
310 | { |
---|
311 | pieces[x] = new float[point1 - point0]; |
---|
312 | System.arraycopy(genome, point0, pieces[x], 0, point1 - point0); |
---|
313 | point0 = point1; |
---|
314 | if (x >= pieces.length - 2) |
---|
315 | point1 = genome.length; |
---|
316 | else |
---|
317 | point1 = points[x + 1]; |
---|
318 | } |
---|
319 | } |
---|
320 | |
---|
321 | /** Joins the n pieces and sets the genome to their concatenation. */ |
---|
322 | public void join(Object[] pieces) |
---|
323 | { |
---|
324 | int sum = 0; |
---|
325 | for (int x = 0; x < pieces.length; x++) |
---|
326 | sum += ((float[]) (pieces[x])).length; |
---|
327 | |
---|
328 | int runningsum = 0; |
---|
329 | float[] newgenome = new float[sum]; |
---|
330 | for (int x = 0; x < pieces.length; x++) |
---|
331 | { |
---|
332 | System.arraycopy(pieces[x], 0, newgenome, runningsum, |
---|
333 | ((float[]) (pieces[x])).length); |
---|
334 | runningsum += ((float[]) (pieces[x])).length; |
---|
335 | } |
---|
336 | // set genome |
---|
337 | genome = newgenome; |
---|
338 | } |
---|
339 | |
---|
340 | /** |
---|
341 | * Destructively mutates the individual in some default manner. The default |
---|
342 | * form simply randomizes genes to a uniform distribution from the min and |
---|
343 | * max of the gene values. It can also add gaussian noise to the genes, |
---|
344 | * if so directed in the FloatVectorSpecies. If the gaussian noise |
---|
345 | * pushes the gene out of range, a new noise value is generated. |
---|
346 | * |
---|
347 | * * @author Liviu Panait and Gabriel Balan |
---|
348 | */ |
---|
349 | public void defaultMutate(EvolutionState state, int thread) |
---|
350 | { |
---|
351 | FloatVectorSpecies s = (FloatVectorSpecies) species; |
---|
352 | if (!(s.mutationProbability > 0.0)) |
---|
353 | return; |
---|
354 | boolean mutationIsBounded = s.mutationIsBounded; |
---|
355 | MersenneTwisterFast rng = state.random[thread]; |
---|
356 | |
---|
357 | if (s.mutationType == FloatVectorSpecies.C_GAUSS_MUTATION) |
---|
358 | { |
---|
359 | for (int x = 0; x < genome.length; x++) |
---|
360 | if (rng.nextBoolean(s.mutationProbability)) |
---|
361 | { |
---|
362 | float val; |
---|
363 | float min = (float) s.minGene(x); |
---|
364 | float max = (float) s.maxGene(x); |
---|
365 | float stdev = (float)s.gaussMutationStdev; |
---|
366 | int outOfBoundsLeftOverTries = s.outOfBoundsRetries; |
---|
367 | boolean givingUpAllowed = s.outOfBoundsRetries!=0; |
---|
368 | do |
---|
369 | { |
---|
370 | val = (float) (rng.nextGaussian() * stdev + genome[x]); |
---|
371 | outOfBoundsLeftOverTries--; |
---|
372 | if (mutationIsBounded && (val > max || val < min)) |
---|
373 | { |
---|
374 | if(givingUpAllowed && (outOfBoundsLeftOverTries==0)) |
---|
375 | { |
---|
376 | val = (float) (min + rng.nextFloat() * (max - min)); |
---|
377 | s.outOfRangeRetryLimitReached(state);//it better get inlined |
---|
378 | break; |
---|
379 | } |
---|
380 | } |
---|
381 | else break; |
---|
382 | } while (true); |
---|
383 | genome[x] = val; |
---|
384 | } |
---|
385 | } |
---|
386 | else if (s.mutationType == FloatVectorSpecies.C_POLYNOMIAL_MUTATION) |
---|
387 | { |
---|
388 | polynomialMutate(state.random[thread], this, s.mutationDistributionIndex, s.polynomialIsAlternative, s.mutationIsBounded); |
---|
389 | } |
---|
390 | else |
---|
391 | {// C_RESET_MUTATION |
---|
392 | for (int x = 0; x < genome.length; x++) |
---|
393 | if (rng.nextBoolean(s.mutationProbability)) |
---|
394 | genome[x] = (float) ((float) s.minGene(x) + rng.nextFloat() * ((float) s.maxGene(x) - (float) s.minGene(x))); |
---|
395 | } |
---|
396 | |
---|
397 | } |
---|
398 | |
---|
399 | /** This function is broken out to keep it identical to NSGA-II's mutation.c code. eta_m is the distribution |
---|
400 | index. */ |
---|
401 | public void polynomialMutate(MersenneTwisterFast random, FloatVectorIndividual individual, double eta_m, boolean alternativePolynomialVersion, boolean mutationIsBounded) |
---|
402 | { |
---|
403 | FloatVectorSpecies s = (FloatVectorSpecies) individual.species; |
---|
404 | float[] ind = individual.genome; |
---|
405 | double[] min_realvar = s.minGenes; |
---|
406 | double[] max_realvar = s.maxGenes; |
---|
407 | |
---|
408 | double rnd, delta1, delta2, mut_pow, deltaq; |
---|
409 | double y, yl, yu, val, xy; |
---|
410 | double y1; |
---|
411 | for (int j=0; j < ind.length; j++) |
---|
412 | { |
---|
413 | if (random.nextBoolean(s.mutationProbability)) |
---|
414 | { |
---|
415 | y1 = y = ind[j]; |
---|
416 | yl = min_realvar[j]; |
---|
417 | yu = max_realvar[j]; |
---|
418 | delta1 = (y-yl)/(yu-yl); |
---|
419 | delta2 = (yu-y)/(yu-yl); |
---|
420 | |
---|
421 | int totalTries = s.outOfBoundsRetries; |
---|
422 | int tries = 0; |
---|
423 | for(tries = 0; tries < totalTries || totalTries == 0; tries++) // keep trying until totalTries is reached if it's not zero. If it's zero, go on forever. |
---|
424 | { |
---|
425 | rnd = (random.nextDouble()); |
---|
426 | mut_pow = 1.0/(eta_m+1.0); |
---|
427 | if (rnd <= 0.5) |
---|
428 | { |
---|
429 | xy = 1.0-delta1; |
---|
430 | val = 2.0*rnd + (alternativePolynomialVersion ? (1.0-2.0*rnd)*(Math.pow(xy,(eta_m+1.0))) : 0.0); |
---|
431 | deltaq = Math.pow(val,mut_pow) - 1.0; |
---|
432 | } |
---|
433 | else |
---|
434 | { |
---|
435 | xy = 1.0-delta2; |
---|
436 | val = 2.0*(1.0-rnd) + (alternativePolynomialVersion ? 2.0*(rnd-0.5)*(Math.pow(xy,(eta_m+1.0))) : 0.0); |
---|
437 | deltaq = 1.0 - (Math.pow(val,mut_pow)); |
---|
438 | } |
---|
439 | y1 = y + deltaq*(yu-yl); |
---|
440 | if (mutationIsBounded && (y1 >= yl && y1 <= yu)) break; // yay, found one |
---|
441 | } |
---|
442 | |
---|
443 | // at this point, if tries is totalTries, we failed |
---|
444 | if (totalTries != 0 && tries == totalTries) |
---|
445 | { |
---|
446 | // just randomize |
---|
447 | y1 = (float)(min_realvar[j] + random.nextFloat() * (max_realvar[j] - min_realvar[j])); |
---|
448 | } |
---|
449 | ind[j] = (float) y1; |
---|
450 | } |
---|
451 | } |
---|
452 | |
---|
453 | } |
---|
454 | |
---|
455 | |
---|
456 | /** |
---|
457 | * Initializes the individual by randomly choosing floats uniformly from |
---|
458 | * mingene to maxgene. |
---|
459 | */ |
---|
460 | public void reset(EvolutionState state, int thread) |
---|
461 | { |
---|
462 | FloatVectorSpecies s = (FloatVectorSpecies) species; |
---|
463 | for (int x = 0; x < genome.length; x++) |
---|
464 | genome[x] = (float) ((float) s.minGene(x) + state.random[thread] |
---|
465 | .nextFloat() |
---|
466 | * ((float) s.maxGene(x) - (float) s.minGene(x))); |
---|
467 | } |
---|
468 | |
---|
469 | public int hashCode() |
---|
470 | { |
---|
471 | // stolen from GPIndividual. It's a decent algorithm. |
---|
472 | int hash = this.getClass().hashCode(); |
---|
473 | |
---|
474 | hash = (hash << 1 | hash >>> 31); |
---|
475 | for (int x = 0; x < genome.length; x++) |
---|
476 | hash = (hash << 1 | hash >>> 31) ^ Float.floatToIntBits(genome[x]); |
---|
477 | |
---|
478 | return hash; |
---|
479 | } |
---|
480 | |
---|
481 | public String genotypeToStringForHumans() |
---|
482 | { |
---|
483 | String s = ""; |
---|
484 | for (int i = 0; i < genome.length; i++) |
---|
485 | s = s + " " + genome[i]; |
---|
486 | return s; |
---|
487 | } |
---|
488 | |
---|
489 | public String genotypeToString() |
---|
490 | { |
---|
491 | StringBuffer s = new StringBuffer(); |
---|
492 | s.append(Code.encode(genome.length)); |
---|
493 | for (int i = 0; i < genome.length; i++) |
---|
494 | s.append(Code.encode(genome[i])); |
---|
495 | return s.toString(); |
---|
496 | } |
---|
497 | |
---|
498 | protected void parseGenotype(final EvolutionState state, |
---|
499 | final LineNumberReader reader) throws IOException |
---|
500 | { |
---|
501 | // read in the next line. The first item is the number of genes |
---|
502 | String s = reader.readLine(); |
---|
503 | DecodeReturn d = new DecodeReturn(s); |
---|
504 | Code.decode(d); |
---|
505 | int lll = (int) (d.l); |
---|
506 | |
---|
507 | genome = new float[lll]; |
---|
508 | |
---|
509 | // read in the genes |
---|
510 | for (int i = 0; i < genome.length; i++) |
---|
511 | { |
---|
512 | Code.decode(d); |
---|
513 | genome[i] = (float) (d.d); |
---|
514 | } |
---|
515 | } |
---|
516 | |
---|
517 | public boolean equals(Object ind) |
---|
518 | { |
---|
519 | if (!(this.getClass().equals(ind.getClass()))) |
---|
520 | return false; // SimpleRuleIndividuals are special. |
---|
521 | FloatVectorIndividual i = (FloatVectorIndividual) ind; |
---|
522 | if (genome.length != i.genome.length) |
---|
523 | return false; |
---|
524 | for (int j = 0; j < genome.length; j++) |
---|
525 | if (genome[j] != i.genome[j]) |
---|
526 | return false; |
---|
527 | return true; |
---|
528 | } |
---|
529 | |
---|
530 | public Object getGenome() |
---|
531 | { |
---|
532 | return genome; |
---|
533 | } |
---|
534 | |
---|
535 | public void setGenome(Object gen) |
---|
536 | { |
---|
537 | genome = (float[]) gen; |
---|
538 | } |
---|
539 | |
---|
540 | public int genomeLength() |
---|
541 | { |
---|
542 | return genome.length; |
---|
543 | } |
---|
544 | |
---|
545 | public void writeGenotype(final EvolutionState state, |
---|
546 | final DataOutput dataOutput) throws IOException |
---|
547 | { |
---|
548 | dataOutput.writeInt(genome.length); |
---|
549 | for (int x = 0; x < genome.length; x++) |
---|
550 | dataOutput.writeFloat(genome[x]); |
---|
551 | } |
---|
552 | |
---|
553 | public void readGenotype(final EvolutionState state, |
---|
554 | final DataInput dataInput) throws IOException |
---|
555 | { |
---|
556 | int len = dataInput.readInt(); |
---|
557 | if (genome == null || genome.length != len) |
---|
558 | genome = new float[len]; |
---|
559 | for (int x = 0; x < genome.length; x++) |
---|
560 | genome[x] = dataInput.readFloat(); |
---|
561 | } |
---|
562 | |
---|
563 | /** Clips each gene value to be within its specified [min,max] range. |
---|
564 | NaN is presently considered in range but the behavior of this method |
---|
565 | should be assumed to be unspecified on encountering NaN. */ |
---|
566 | public void clamp() |
---|
567 | { |
---|
568 | FloatVectorSpecies _species = (FloatVectorSpecies)species; |
---|
569 | for (int i = 0; i < genomeLength(); i++) |
---|
570 | { |
---|
571 | float minGene = (float)_species.minGene(i); |
---|
572 | if (genome[i] < minGene) |
---|
573 | genome[i] = minGene; |
---|
574 | else |
---|
575 | { |
---|
576 | float maxGene = (float)_species.maxGene(i); |
---|
577 | if (genome[i] > maxGene) |
---|
578 | genome[i] = maxGene; |
---|
579 | } |
---|
580 | } |
---|
581 | } |
---|
582 | |
---|
583 | public void setGenomeLength(int len) |
---|
584 | { |
---|
585 | float[] newGenome = new float[len]; |
---|
586 | System.arraycopy(genome, 0, newGenome, 0, |
---|
587 | genome.length < newGenome.length ? genome.length : newGenome.length); |
---|
588 | genome = newGenome; |
---|
589 | } |
---|
590 | |
---|
591 | /** Returns true if each gene value is within is specified [min,max] range. |
---|
592 | NaN is presently considered in range but the behavior of this method |
---|
593 | should be assumed to be unspecified on encountering NaN. */ |
---|
594 | public boolean isInRange() |
---|
595 | { |
---|
596 | FloatVectorSpecies _species = (FloatVectorSpecies)species; |
---|
597 | for (int i = 0; i < genomeLength(); i++) |
---|
598 | if (genome[i] < _species.minGene(i) || |
---|
599 | genome[i] > _species.maxGene(i)) return false; |
---|
600 | return true; |
---|
601 | } |
---|
602 | |
---|
603 | public double distanceTo(Individual otherInd) |
---|
604 | { |
---|
605 | if (!(otherInd instanceof FloatVectorIndividual)) |
---|
606 | return super.distanceTo(otherInd); // will return infinity! |
---|
607 | |
---|
608 | FloatVectorIndividual other = (FloatVectorIndividual) otherInd; |
---|
609 | float[] otherGenome = other.genome; |
---|
610 | double sumSquaredDistance =0.0; |
---|
611 | for(int i=0; i < other.genomeLength(); i++) |
---|
612 | { |
---|
613 | double dist = this.genome[i] - otherGenome[i]; |
---|
614 | sumSquaredDistance += dist*dist; |
---|
615 | } |
---|
616 | return StrictMath.sqrt(sumSquaredDistance); |
---|
617 | } |
---|
618 | } |
---|