1 | /* |
---|
2 | Copyright 2006 by Sean Luke |
---|
3 | Licensed under the Academic Free License version 3.0 |
---|
4 | See the file "LICENSE" for more information |
---|
5 | */ |
---|
6 | |
---|
7 | |
---|
8 | package ec.steadystate; |
---|
9 | import ec.simple.*; |
---|
10 | import ec.*; |
---|
11 | import ec.util.*; |
---|
12 | import java.util.*; |
---|
13 | |
---|
14 | /* |
---|
15 | * SteadyStateBreeder.java |
---|
16 | * |
---|
17 | */ |
---|
18 | |
---|
19 | /** |
---|
20 | * This subclass of Breeder performs the evaluation portion of Steady-State Evolution and (in distributed form) |
---|
21 | * Asynchronous Evolution. The procedure is as follows. We begin with an empty Population and one by |
---|
22 | * one create new Indivdiuals and send them off to be evaluated. In basic Steady-State Evolution the |
---|
23 | * individuals are immediately evaluated and we wait for them; but in Asynchronous Evolution the individuals are evaluated |
---|
24 | * for however long it takes and we don't wait for them to finish. When individuals return they are |
---|
25 | * added to the Population until it is full. No duplicate individuals are allowed. |
---|
26 | * |
---|
27 | * <p>At this point the system switches to its "steady state": individuals are bred from the population |
---|
28 | * one by one, and sent off to be evaluated. Once again, in basic Steady-State Evolution the |
---|
29 | * individuals are immediately evaluated and we wait for them; but in Asynchronous Evolution the individuals are evaluated |
---|
30 | * for however long it takes and we don't wait for them to finish. When an individual returns, we |
---|
31 | * mark an individual in the Population for death, then replace it with the new returning individual. |
---|
32 | * Note that during the steady-state, Asynchronous Evolution could be still sending back some "new" individuals |
---|
33 | * created during the initialization phase, not "bred" individuals. |
---|
34 | * |
---|
35 | * <p>The determination of how an individual is marked for death is done by the SteadyStateBreeder. This is |
---|
36 | * a SelectionMethod. Note that this SelectionMethod probably should <i>not</i> be selecting for the "fittest" |
---|
37 | * individuals, but rather for either random individuals (the standard approach) or for "bad" individuals. |
---|
38 | * |
---|
39 | |
---|
40 | <p><b>Parameters</b><br> |
---|
41 | <table> |
---|
42 | <tr><td valign=top><tt>deselector</tt><br> |
---|
43 | <font size=-1>classname, inherits and != ec.SelectionMethod</font></td> |
---|
44 | <td valign=top>(The SelectionMethod used to pick individuals for death)</td></tr> |
---|
45 | </table> |
---|
46 | |
---|
47 | * @author Sean Luke |
---|
48 | * @version 1.0 |
---|
49 | */ |
---|
50 | |
---|
51 | public class SteadyStateBreeder extends SimpleBreeder |
---|
52 | { |
---|
53 | /** If st.firstTimeAround, this acts exactly like SimpleBreeder. |
---|
54 | Else, it only breeds one new individual per subpopulation, to |
---|
55 | place in position 0 of the subpopulation. |
---|
56 | */ |
---|
57 | BreedingPipeline[] bp; |
---|
58 | |
---|
59 | public static final String P_DESELECTOR = "deselector"; |
---|
60 | // public static final String P_RETRIES = "duplicate-retries"; |
---|
61 | |
---|
62 | /** Loaded during the first iteration of breedPopulation */ |
---|
63 | SelectionMethod deselectors[]; |
---|
64 | |
---|
65 | /** Do we allow duplicates? */ |
---|
66 | // public int numDuplicateRetries; |
---|
67 | |
---|
68 | public SteadyStateBreeder() { bp = null; deselectors = null; } |
---|
69 | |
---|
70 | public void setup(final EvolutionState state, final Parameter base) |
---|
71 | { |
---|
72 | super.setup(state,base); |
---|
73 | |
---|
74 | Parameter p = new Parameter(Initializer.P_POP).push(Population.P_SIZE); |
---|
75 | int size = state.parameters.getInt(p,null,1); |
---|
76 | |
---|
77 | // if size is wrong, we'll let Population complain about it -- for us, we'll just make 0-sized arrays and drop out. |
---|
78 | if (size > 0) |
---|
79 | deselectors = new SelectionMethod[size]; |
---|
80 | |
---|
81 | // load the deselectors |
---|
82 | for(int x=0;x<deselectors.length;x++) |
---|
83 | { |
---|
84 | deselectors[x] = (SelectionMethod)( |
---|
85 | state.parameters.getInstanceForParameter( |
---|
86 | SteadyStateDefaults.base().push(P_DESELECTOR).push(""+x),null,SelectionMethod.class)); |
---|
87 | if (!(deselectors[x] instanceof SteadyStateBSourceForm)) |
---|
88 | state.output.error("Deselector for subpopulation " + x + " is not of SteadyStateBSourceForm."); |
---|
89 | deselectors[x].setup(state,SteadyStateDefaults.base().push(P_DESELECTOR).push(""+x)); |
---|
90 | } |
---|
91 | state.output.exitIfErrors(); |
---|
92 | |
---|
93 | // How often do we retry if we find a duplicate? |
---|
94 | /* |
---|
95 | numDuplicateRetries = state.parameters.getInt( |
---|
96 | SteadyStateDefaults.base().push(P_RETRIES),null,0); |
---|
97 | if (numDuplicateRetries < 0) state.output.fatal( |
---|
98 | "The number of retries for duplicates must be an integer >= 0.\n", |
---|
99 | base.push(P_RETRIES),null); |
---|
100 | */ |
---|
101 | } |
---|
102 | |
---|
103 | /** Called to check to see if the breeding sources are correct -- if you |
---|
104 | use this method, you must call state.output.exitIfErrors() immediately |
---|
105 | afterwards. */ |
---|
106 | public void sourcesAreProperForm(final SteadyStateEvolutionState state, |
---|
107 | final BreedingPipeline[] breedingPipelines) |
---|
108 | { |
---|
109 | for(int x=0;x<breedingPipelines.length;x++) |
---|
110 | { |
---|
111 | if (!(breedingPipelines[x] instanceof SteadyStateBSourceForm)) |
---|
112 | state.output.error("Breeding Pipeline of subpopulation " + x + " is not of SteadyStateBSourceForm"); |
---|
113 | ((SteadyStateBSourceForm)(breedingPipelines[x])).sourcesAreProperForm(state); |
---|
114 | } |
---|
115 | } |
---|
116 | |
---|
117 | /** Called whenever individuals have been replaced by new |
---|
118 | individuals in the population. */ |
---|
119 | public void individualReplaced(final SteadyStateEvolutionState state, |
---|
120 | final int subpopulation, |
---|
121 | final int thread, |
---|
122 | final int individual) |
---|
123 | { |
---|
124 | for(int x=0;x<bp.length;x++) |
---|
125 | ((SteadyStateBSourceForm)bp[x]). |
---|
126 | individualReplaced(state,subpopulation,thread,individual); |
---|
127 | // let the deselector know |
---|
128 | ((SteadyStateBSourceForm)deselectors[subpopulation]).individualReplaced(state,subpopulation,thread,individual); |
---|
129 | } |
---|
130 | |
---|
131 | public void finishPipelines(EvolutionState state) |
---|
132 | { |
---|
133 | for(int x = 0 ; x < deselectors.length; x++) |
---|
134 | { |
---|
135 | bp[x].finishProducing(state,x,0); |
---|
136 | deselectors[x].finishProducing(state,x,0); |
---|
137 | } |
---|
138 | } |
---|
139 | |
---|
140 | public void prepareToBreed(EvolutionState state, int thread) |
---|
141 | { |
---|
142 | final SteadyStateEvolutionState st = (SteadyStateEvolutionState) state; |
---|
143 | // set up the breeding pipelines |
---|
144 | bp = new BreedingPipeline[st.population.subpops.length]; |
---|
145 | for(int pop=0;pop<bp.length;pop++) |
---|
146 | { |
---|
147 | bp[pop] = (BreedingPipeline)st.population.subpops[pop].species.pipe_prototype.clone(); |
---|
148 | if (!bp[pop].produces(st,st.population,pop,0)) |
---|
149 | st.output.error("The Breeding Pipeline of subpopulation " + pop + " does not produce individuals of the expected species " + st.population.subpops[pop].species.getClass().getName() + " and with the expected Fitness class " + st.population.subpops[pop].species.f_prototype.getClass().getName()); |
---|
150 | } |
---|
151 | // are they of the proper form? |
---|
152 | sourcesAreProperForm(st,bp); |
---|
153 | // because I promised when calling sourcesAreProperForm |
---|
154 | st.output.exitIfErrors(); |
---|
155 | |
---|
156 | // warm them up |
---|
157 | for(int pop=0;pop<bp.length;pop++) |
---|
158 | { |
---|
159 | bp[pop].prepareToProduce(state,pop,0); |
---|
160 | deselectors[pop].prepareToProduce(state,pop,0); |
---|
161 | } |
---|
162 | } |
---|
163 | |
---|
164 | public Individual breedIndividual(final EvolutionState state, int subpop, int thread) |
---|
165 | { |
---|
166 | final SteadyStateEvolutionState st = (SteadyStateEvolutionState) state; |
---|
167 | Individual[] newind = new Individual[1]; |
---|
168 | |
---|
169 | // breed a single individual |
---|
170 | bp[subpop].produce(1,1,0,subpop,newind,state,thread); |
---|
171 | return newind[0]; |
---|
172 | } |
---|
173 | } |
---|