[6152] | 1 | /* |
---|
| 2 | Copyright 2006 by Sean Luke |
---|
| 3 | Licensed under the Academic Free License version 3.0 |
---|
| 4 | See the file "LICENSE" for more information |
---|
| 5 | */ |
---|
| 6 | |
---|
| 7 | |
---|
| 8 | package ec.simple; |
---|
| 9 | import ec.*; |
---|
| 10 | import ec.steadystate.*; |
---|
| 11 | import java.io.IOException; |
---|
| 12 | import ec.util.*; |
---|
| 13 | import java.io.File; |
---|
| 14 | |
---|
| 15 | /* |
---|
| 16 | * SimpleStatistics.java |
---|
| 17 | * |
---|
| 18 | * Created: Tue Aug 10 21:10:48 1999 |
---|
| 19 | * By: Sean Luke |
---|
| 20 | */ |
---|
| 21 | |
---|
| 22 | /** |
---|
| 23 | * A basic Statistics class suitable for simple problem applications. |
---|
| 24 | * |
---|
| 25 | * SimpleStatistics prints out the best individual, per subpopulation, |
---|
| 26 | * each generation. At the end of a run, it also prints out the best |
---|
| 27 | * individual of the run. SimpleStatistics outputs this data to a log |
---|
| 28 | * which may either be a provided file or stdout. Compressed files will |
---|
| 29 | * be overridden on restart from checkpoint; uncompressed files will be |
---|
| 30 | * appended on restart. |
---|
| 31 | * |
---|
| 32 | * <p>SimpleStatistics implements a simple version of steady-state statistics: |
---|
| 33 | * if it quits before a generation boundary, |
---|
| 34 | * it will include the best individual discovered, even if the individual was discovered |
---|
| 35 | * after the last boundary. This is done by using individualsEvaluatedStatistics(...) |
---|
| 36 | * to update best-individual-of-generation in addition to doing it in |
---|
| 37 | * postEvaluationStatistics(...). |
---|
| 38 | |
---|
| 39 | <p><b>Parameters</b><br> |
---|
| 40 | <table> |
---|
| 41 | <tr><td valign=top><i>base.</i><tt>gzip</tt><br> |
---|
| 42 | <font size=-1>boolean</font></td> |
---|
| 43 | <td valign=top>(whether or not to compress the file (.gz suffix added)</td></tr> |
---|
| 44 | <tr><td valign=top><i>base.</i><tt>file</tt><br> |
---|
| 45 | <font size=-1>String (a filename), or nonexistant (signifies stdout)</font></td> |
---|
| 46 | <td valign=top>(the log for statistics)</td></tr> |
---|
| 47 | </table> |
---|
| 48 | |
---|
| 49 | * |
---|
| 50 | * @author Sean Luke |
---|
| 51 | * @version 1.0 |
---|
| 52 | */ |
---|
| 53 | |
---|
| 54 | public class SimpleStatistics extends Statistics implements SteadyStateStatisticsForm //, ec.eval.ProvidesBestSoFar |
---|
| 55 | { |
---|
| 56 | public Individual[] getBestSoFar() { return best_of_run; } |
---|
| 57 | |
---|
| 58 | /** log file parameter */ |
---|
| 59 | public static final String P_STATISTICS_FILE = "file"; |
---|
| 60 | |
---|
| 61 | /** compress? */ |
---|
| 62 | public static final String P_COMPRESS = "gzip"; |
---|
| 63 | |
---|
| 64 | /** The Statistics' log */ |
---|
| 65 | public int statisticslog; |
---|
| 66 | |
---|
| 67 | /** The best individual we've found so far */ |
---|
| 68 | public Individual[] best_of_run; |
---|
| 69 | |
---|
| 70 | /** Should we compress the file? */ |
---|
| 71 | public boolean compress; |
---|
| 72 | |
---|
| 73 | |
---|
| 74 | public SimpleStatistics() { best_of_run = null; statisticslog = 0; /* stdout */ } |
---|
| 75 | |
---|
| 76 | public void setup(final EvolutionState state, final Parameter base) |
---|
| 77 | { |
---|
| 78 | super.setup(state,base); |
---|
| 79 | |
---|
| 80 | compress = state.parameters.getBoolean(base.push(P_COMPRESS),null,false); |
---|
| 81 | |
---|
| 82 | File statisticsFile = state.parameters.getFile( |
---|
| 83 | base.push(P_STATISTICS_FILE),null); |
---|
| 84 | |
---|
| 85 | if (statisticsFile!=null) |
---|
| 86 | try |
---|
| 87 | { |
---|
| 88 | statisticslog = state.output.addLog(statisticsFile, !compress, compress); |
---|
| 89 | } |
---|
| 90 | catch (IOException i) |
---|
| 91 | { |
---|
| 92 | state.output.fatal("An IOException occurred while trying to create the log " + statisticsFile + ":\n" + i); |
---|
| 93 | } |
---|
| 94 | } |
---|
| 95 | |
---|
| 96 | public void postInitializationStatistics(final EvolutionState state) |
---|
| 97 | { |
---|
| 98 | super.postInitializationStatistics(state); |
---|
| 99 | |
---|
| 100 | // set up our best_of_run array -- can't do this in setup, because |
---|
| 101 | // we don't know if the number of subpopulations has been determined yet |
---|
| 102 | best_of_run = new Individual[state.population.subpops.length]; |
---|
| 103 | } |
---|
| 104 | |
---|
| 105 | /** Logs the best individual of the generation. */ |
---|
| 106 | public void postEvaluationStatistics(final EvolutionState state) |
---|
| 107 | { |
---|
| 108 | super.postEvaluationStatistics(state); |
---|
| 109 | |
---|
| 110 | // for now we just print the best fitness per subpopulation. |
---|
| 111 | Individual[] best_i = new Individual[state.population.subpops.length]; // quiets compiler complaints |
---|
| 112 | for(int x=0;x<state.population.subpops.length;x++) |
---|
| 113 | { |
---|
| 114 | best_i[x] = state.population.subpops[x].individuals[0]; |
---|
| 115 | for(int y=1;y<state.population.subpops[x].individuals.length;y++) |
---|
| 116 | if (state.population.subpops[x].individuals[y].fitness.betterThan(best_i[x].fitness)) |
---|
| 117 | best_i[x] = state.population.subpops[x].individuals[y]; |
---|
| 118 | |
---|
| 119 | // now test to see if it's the new best_of_run |
---|
| 120 | if (best_of_run[x]==null || best_i[x].fitness.betterThan(best_of_run[x].fitness)) |
---|
| 121 | best_of_run[x] = (Individual)(best_i[x].clone()); |
---|
| 122 | } |
---|
| 123 | |
---|
| 124 | // print the best-of-generation individual |
---|
| 125 | state.output.println("\nGeneration: " + state.generation,statisticslog); |
---|
| 126 | state.output.println("Best Individual:",statisticslog); |
---|
| 127 | for(int x=0;x<state.population.subpops.length;x++) |
---|
| 128 | { |
---|
| 129 | state.output.println("Subpopulation " + x + ":",statisticslog); |
---|
| 130 | best_i[x].printIndividualForHumans(state,statisticslog); |
---|
| 131 | state.output.message("Subpop " + x + " best fitness of generation: " + best_i[x].fitness.fitnessToStringForHumans()); |
---|
| 132 | } |
---|
| 133 | } |
---|
| 134 | |
---|
| 135 | /** Logs the best individual of the run. */ |
---|
| 136 | public void finalStatistics(final EvolutionState state, final int result) |
---|
| 137 | { |
---|
| 138 | super.finalStatistics(state,result); |
---|
| 139 | |
---|
| 140 | // for now we just print the best fitness |
---|
| 141 | |
---|
| 142 | state.output.println("\nBest Individual of Run:",statisticslog); |
---|
| 143 | for(int x=0;x<state.population.subpops.length;x++ ) |
---|
| 144 | { |
---|
| 145 | state.output.println("Subpopulation " + x + ":",statisticslog); |
---|
| 146 | best_of_run[x].printIndividualForHumans(state,statisticslog); |
---|
| 147 | state.output.message("Subpop " + x + " best fitness of run: " + best_of_run[x].fitness.fitnessToStringForHumans()); |
---|
| 148 | |
---|
| 149 | // finally describe the winner if there is a description |
---|
| 150 | if (state.evaluator.p_problem instanceof SimpleProblemForm) |
---|
| 151 | ((SimpleProblemForm)(state.evaluator.p_problem.clone())).describe(state, best_of_run[x], x, 0, statisticslog); |
---|
| 152 | } |
---|
| 153 | } |
---|
| 154 | } |
---|