Free cookie consent management tool by TermsFeed Policy Generator

source: branches/OKBJavaConnector/ECJClient/src/ec/simple/SimpleShortStatistics.java @ 10216

Last change on this file since 10216 was 6152, checked in by bfarka, 14 years ago

added ecj and custom statistics to communicate with the okb services #1441

File size: 10.4 KB
Line 
1/*
2  Copyright 2006 by Sean Luke
3  Licensed under the Academic Free License version 3.0
4  See the file "LICENSE" for more information
5*/
6
7
8package ec.simple;
9import ec.*;
10import java.io.*;
11import ec.util.*;
12import ec.eval.*;
13
14/*
15 * SimpleShortStatistics.java
16 *
17 * Created: Tue Jun 19 15:08:29 EDT 2001
18 * By: Sean Luke
19 */
20
21/**
22 * A Simple-style statistics generator, intended to be easily parseable with
23 * awk or other Unix tools.  Prints fitness information,
24 * one generation (or pseudo-generation) per line.
25 * If gather-full is true, then timing information, number of nodes
26 * and depths of trees, etc. are also given.  No final statistics information
27 * is given.
28 *
29 * <p> Each line represents a single generation. 
30 * The first items on a line are always:
31 <ul>
32 <li> The generation number
33 <li> (if gather-full) how long initialization took in milliseconds, or how long the previous generation took to breed to form this generation
34 <li> (if gather-full) how many bytes initialization took, or how how many bytes the previous generation took to breed to form this generation.  This utilization is an approximation only, made by the Java system, and does not take into consideration the possibility of garbage collection (which might make the number negative).
35 <li> (if gather-full) How long evaluation took in milliseconds this generation
36 <li> (if gather-full) how many bytes evaluation took this generation.  This utilization is an approximation only, made by the Java system, and does not take into consideration the possibility of garbage collection (which might make the number negative).
37 </ul>
38
39 <p>Then the following items appear, per subpopulation:
40 <ul>
41 <li> (if gather-full) The average size of an individual this generation
42 <li> (if gather-full) The average size of an individual so far in the run
43 <li> The mean fitness of the subpopulation this generation
44 <li> The best fitness of the subpopulation this generation
45 <li> The best fitness of the subpopulation so far in the run
46 <li> (if gather-full) The size of the best individual this generation
47 <li> (if gather-full) The size of the best individual so far in the run
48 </ul>
49
50 Compressed files will be overridden on restart from checkpoint; uncompressed files will be
51 appended on restart.
52
53 <p><b>Parameters</b><br>
54 <table>
55 <tr><td valign=top><i>base.</i><tt>gzip</tt><br>
56 <font size=-1>boolean</font></td>
57 <td valign=top>(whether or not to compress the file (.gz suffix added)</td></tr>
58 <tr><td valign=top><i>base.</i><tt>file</tt><br>
59 <font size=-1>String (a filename), or nonexistant (signifies stdout)</font></td>
60 <td valign=top>(the log for statistics)</td></tr>
61 <tr><td valign=top><i>base</i>.<tt>gather-full</tt><br>
62 <font size=-1>bool = <tt>true</tt> or <tt>false</tt> (default)</font></td>
63 <td valign=top>(should we full statistics on individuals (will run slower, though the slowness is due to off-line processing that won't mess up timings)</td></tr>
64 </table>
65 * @author Sean Luke
66 * @version 1.0
67 */
68
69public class SimpleShortStatistics extends Statistics // implements ProvidesBestSoFar
70    {
71    public Individual[] getBestSoFar() { return best_of_run; }
72       
73    /** log file parameter */
74    public static final String P_STATISTICS_FILE = "file";
75
76    /** The Statistics' log */
77    public int statisticslog;
78
79    /** compress? */
80    public static final String P_COMPRESS = "gzip";
81
82    public static final String P_FULL = "gather-full";
83
84    public boolean doFull;
85
86    public Individual[] best_of_run;
87    public long lengths[];
88
89    // timings
90    public long lastTime;
91   
92    // usage
93    public long lastUsage;
94   
95    public SimpleShortStatistics() { /*best_of_run = null;*/ statisticslog = 0; /* stdout */ }
96
97    public void setup(final EvolutionState state, final Parameter base)
98        {
99        super.setup(state,base);
100        File statisticsFile = state.parameters.getFile(
101            base.push(P_STATISTICS_FILE),null);
102
103        if (statisticsFile!=null) try
104                                      {
105                                      statisticslog = state.output.addLog(statisticsFile,
106                                          !state.parameters.getBoolean(base.push(P_COMPRESS),null,false),
107                                          state.parameters.getBoolean(base.push(P_COMPRESS),null,false));
108                                      }
109            catch (IOException i)
110                {
111                state.output.fatal("An IOException occurred while trying to create the log " + statisticsFile + ":\n" + i);
112                }
113        doFull = state.parameters.getBoolean(base.push(P_FULL),null,false);
114        }
115
116
117    public void preInitializationStatistics(final EvolutionState state)
118        {
119        super.preInitializationStatistics(state);
120       
121        if (doFull)
122            {
123            Runtime r = Runtime.getRuntime();
124            lastTime = System.currentTimeMillis();
125            lastUsage = r.totalMemory() - r.freeMemory();
126            }
127        }
128   
129    public void postInitializationStatistics(final EvolutionState state)
130        {
131        super.postInitializationStatistics(state);
132       
133        // set up our best_of_run array -- can't do this in setup, because
134        // we don't know if the number of subpopulations has been determined yet
135        best_of_run = new Individual[state.population.subpops.length];
136       
137        // print out our generation number
138        state.output.print("0 ", statisticslog);
139
140        // gather timings       
141        if (doFull)
142            {
143            lengths = new long[state.population.subpops.length];
144            for(int x=0;x<lengths.length;x++) lengths[x] = 0;
145            Runtime r = Runtime.getRuntime();
146            long curU =  r.totalMemory() - r.freeMemory();         
147            state.output.print("" + (System.currentTimeMillis()-lastTime) + " ",  statisticslog);
148            state.output.print("" + (curU-lastUsage) + " ",  statisticslog);           
149            }
150        }
151
152    public void preBreedingStatistics(final EvolutionState state)
153        {
154        super.preBreedingStatistics(state);
155        if (doFull)
156            {
157            Runtime r = Runtime.getRuntime();
158            lastTime = System.currentTimeMillis();
159            lastUsage = r.totalMemory() - r.freeMemory();
160            }
161        }
162
163    public void postBreedingStatistics(final EvolutionState state)
164        {
165        super.postBreedingStatistics(state);
166        state.output.print("" + (state.generation + 1) + " ", statisticslog); // 1 because we're putting the breeding info on the same line as the generation it *produces*, and the generation number is increased *after* breeding occurs, and statistics for it
167
168        // gather timings
169        if (doFull)
170            {
171            Runtime r = Runtime.getRuntime();
172            long curU =  r.totalMemory() - r.freeMemory();         
173            state.output.print("" + (System.currentTimeMillis()-lastTime) + " ",  statisticslog);
174            state.output.print("" + (curU-lastUsage) + " ",  statisticslog);           
175            }
176        }
177
178    public void preEvaluationStatistics(final EvolutionState state)
179        {
180        super.preEvaluationStatistics(state);
181        if (doFull)
182            {
183            Runtime r = Runtime.getRuntime();
184            lastTime = System.currentTimeMillis();
185            lastUsage = r.totalMemory() - r.freeMemory();
186            }
187        }
188
189    /** Prints out the statistics, but does not end with a println --
190        this lets overriding methods print additional statistics on the same line */
191    protected void _postEvaluationStatistics(final EvolutionState state)
192        {
193        // gather timings
194        if (doFull)
195            {
196            Runtime r = Runtime.getRuntime();
197            long curU =  r.totalMemory() - r.freeMemory();         
198            state.output.print("" + (System.currentTimeMillis()-lastTime) + " ",  statisticslog);
199            state.output.print("" + (curU-lastUsage) + " ",  statisticslog);           
200            }
201       
202
203        long lengthPerGen = 0;
204        Individual[] best_i = new Individual[state.population.subpops.length];
205        for(int x=0;x<state.population.subpops.length;x++)
206            {
207            if (doFull)
208                {
209                lengthPerGen = 0;
210                for(int y=0;y<state.population.subpops[x].individuals.length;y++)
211                    {
212                    long size = state.population.subpops[x].individuals[y].size();
213                    lengthPerGen += size;
214                    lengths[x] += size;
215                    }
216
217                state.output.print("" + ((double)lengthPerGen)/state.population.subpops[x].individuals.length + " ",  statisticslog);
218
219                state.output.print("" + ((double)lengths[x])/(state.population.subpops[x].individuals.length * (state.generation + 1)) + " ",  statisticslog);
220                }
221                   
222            // fitness information
223            double meanFitness = 0.0;
224
225            for(int y=0;y<state.population.subpops[x].individuals.length;y++)
226                {
227                // best individual
228                if (best_i[x]==null ||
229                    state.population.subpops[x].individuals[y].fitness.betterThan(best_i[x].fitness))
230                    best_i[x] = state.population.subpops[x].individuals[y];
231
232                // mean fitness for population
233                meanFitness += state.population.subpops[x].individuals[y].fitness.fitness();
234                }
235           
236            // compute fitness stats
237            meanFitness /= state.population.subpops[x].individuals.length;
238            state.output.print("" + meanFitness + " " + best_i[x].fitness.fitness() + " ",
239                statisticslog);
240
241            // now test to see if it's the new best_of_run[x]
242            if (best_of_run[x]==null || best_i[x].fitness.betterThan(best_of_run[x].fitness))
243                best_of_run[x] = (Individual)(best_i[x].clone());
244           
245            state.output.print("" + best_of_run[x].fitness.fitness() + " ",
246                statisticslog);
247
248            if( doFull )
249                {
250                state.output.print("" + (double)(best_i[x].size()) + " " +
251                    (double)(best_of_run[x].size()) + " ",
252                    statisticslog);
253                }
254            }
255        // we're done!
256        }
257
258    public void postEvaluationStatistics(final EvolutionState state)
259        {
260        super.postEvaluationStatistics(state);
261        _postEvaluationStatistics(state);
262        state.output.println("", statisticslog);
263        }
264
265    }
Note: See TracBrowser for help on using the repository browser.