Free cookie consent management tool by TermsFeed Policy Generator

source: branches/OKBJavaConnector/ECJClient/src/ec/select/SigmaScalingSelection.java @ 7611

Last change on this file since 7611 was 6152, checked in by bfarka, 14 years ago

added ecj and custom statistics to communicate with the okb services #1441

File size: 5.6 KB
Line 
1/*
2  Copyright 2006 by Sean Luke
3  Licensed under the Academic Free License version 3.0
4  See the file "LICENSE" for more information
5*/
6
7
8package ec.select;
9import ec.util.*;
10import ec.*;
11
12/*
13 * SigmaScalingSelection.java
14 *
15 * Created: Fri Jun 5 2009
16 * By: Jack Compton
17 */
18
19/**
20 * Similar to FitProportionateSelection, but with adjustments to scale up/exaggerate differences in fitness for selection when true fitness values are very close to
21 * eachother across the population. This addreses a common problem with FitProportionateSelection wherein selection approaches random selection during
22 * late runs when fitness values do not differ by much.
23 *
24 * <p>
25 * Like FitProportionateSelection this is not appropriate for steady-state evolution.
26 * If you're not familiar with the relative advantages of
27 * selection methods and just want a good one,
28 * use TournamentSelection instead. Not appropriate for
29 * multiobjective fitnesses.
30 *
31 * <p><b><font color=red>
32 * Note: Fitnesses must be non-negative.  0 is assumed to be the worst fitness.
33 * </font></b>
34
35 <p><b>Typical Number of Individuals Produced Per <tt>produce(...)</tt> call</b><br>
36 Always 1.
37 
38 <p><b>Parameters</b><br>
39 <table>
40 <tr><td valign=top><i>base.</i><tt>scaled-fitness-floor</tt><br>
41 <font size=-1>double = some small number (defaults to 0.1)</font></td>
42 <td valign=top>(The sigma scaling formula sometimes returns negative values. This is unacceptable for fitness proportionate style selection so we must substitute
43 the fitnessFloor (some value >= 0) for the sigma scaled fitness when that sigma scaled fitness <= fitnessFloor.)</td></tr>
44 </table>
45 
46
47 <p><b>Default Base</b><br>
48 select.sigma-scaling
49
50 *
51 * @author Jack Compton
52 * @version 1.0
53 */
54
55public class SigmaScalingSelection extends FitProportionateSelection
56    {
57    /** Default base */
58    public static final String P_SIGMA_SCALING = "sigma-scaling";
59               
60    /** Scaled fitness floor */
61    // Used as a cut-off point when negative valued scaled fitnesses are encountered (negative fitness values are not compatible with fitness proportionate style selection methods)
62    public static final String P_SCALED_FITNESS_FLOOR = "scaled-fitness-floor";     
63               
64    /** Floor for sigma scaled fitnesses **/
65    private float fitnessFloor;
66               
67    public Parameter defaultBase()
68        {
69        return SelectDefaults.base().push(P_SIGMA_SCALING);
70        }
71       
72    public void setup(final EvolutionState state, final Parameter base)
73        {
74        super.setup(state,base);
75                       
76        Parameter def = defaultBase();
77                       
78        fitnessFloor = state.parameters.getFloatWithDefault(base.push(P_SCALED_FITNESS_FLOOR),def.push(P_SCALED_FITNESS_FLOOR),0.1); // default scaled fitness floor of 0.1 according to Tanese (1989)
79                       
80        if (fitnessFloor < 0)
81            {
82            //Hey! you gotta cool!  Set your cooling rate to a positive value!
83            state.output.fatal("The scaled-fitness-floor must be a non-negative value.",base.push(P_SCALED_FITNESS_FLOOR),def.push(P_SCALED_FITNESS_FLOOR));
84            }
85        }
86               
87    // completely override FitProportionateSelection.prepareToProduce
88    public void prepareToProduce(final EvolutionState s,
89        final int subpopulation,
90        final int thread)
91        {
92        // load fitnesses
93        fitnesses = new float[s.population.subpops[subpopulation].individuals.length];
94       
95        double sigma;
96        double meanFitness;
97        double meanSum = 0;
98        double squaredDeviationsSum = 0;
99               
100        for(int x=0;x<fitnesses.length;x++)
101            {
102            fitnesses[x] = ((Individual)(s.population.subpops[subpopulation].individuals[x])).fitness.fitness();
103            if (fitnesses[x] < 0) // uh oh
104                s.output.fatal("Discovered a negative fitness value.  SigmaScalingSelection requires that all fitness values be non-negative(offending subpopulation #" + subpopulation + ")");
105            }
106                       
107        // Calculate meanFitness
108        for(int x=0;x<fitnesses.length;x++)
109            {
110            meanSum = meanSum + fitnesses[x];
111            }
112        meanFitness = meanSum/fitnesses.length;
113                       
114        // Calculate sum of squared deviations
115        for(int x=0;x<fitnesses.length;x++)
116            {
117            squaredDeviationsSum = squaredDeviationsSum + Math.pow(fitnesses[x]-meanFitness,2);
118            }
119        sigma = Math.sqrt(squaredDeviationsSum/(fitnesses.length-1));
120               
121        // Fill fitnesses[] with sigma scaled fitness values
122        for(int x=0;x<fitnesses.length;x++)
123            {
124            fitnesses[x] = (float)sigmaScaledValue(fitnesses[x], meanFitness, sigma, s); // adjust the fitness proportion according to sigma scaling.
125                               
126            // Sigma scaling formula can return negative values, this is unacceptable for fitness proportionate style selection...
127            // so we must substitute the fitnessFloor (some value >= 0) when a sigma scaled fitness <= fitnessFloor is encountered.
128            if (fitnesses[x] < fitnessFloor) 
129                fitnesses[x] = fitnessFloor;
130            }
131       
132        // organize the distribution.  All zeros in fitness is fine
133        RandomChoice.organizeDistribution(fitnesses, true);
134        }
135
136    private double sigmaScaledValue(double fitness, double meanFitness, double sigma, final EvolutionState s)
137        {
138        if (sigma != 0)
139            return 1+(fitness-meanFitness)/(2*sigma);
140        return 1.0;
141        }
142       
143    }
Note: See TracBrowser for help on using the repository browser.