1 | /* |
---|
2 | Copyright 2006 by Sean Luke |
---|
3 | Licensed under the Academic Free License version 3.0 |
---|
4 | See the file "LICENSE" for more information |
---|
5 | */ |
---|
6 | |
---|
7 | |
---|
8 | package ec.select; |
---|
9 | import ec.util.*; |
---|
10 | import ec.*; |
---|
11 | |
---|
12 | /* |
---|
13 | * SUSSelection.java |
---|
14 | * |
---|
15 | * Created: Thu Feb 12 16:19:52 EST 2009 |
---|
16 | * By: Sean Luke |
---|
17 | */ |
---|
18 | |
---|
19 | /** |
---|
20 | * Picks individuals in a population using the Stochastic Universal Selection (SUS) process, using |
---|
21 | * fitnesses as returned by their fitness() methods. This is expensive to |
---|
22 | * set up and bring down, so it's not appropriate for steady-state evolution. |
---|
23 | * If you're not familiar with the relative advantages of |
---|
24 | * selection methods and just want a good one, |
---|
25 | * use TournamentSelection instead. Not appropriate for |
---|
26 | * multiobjective fitnesses. |
---|
27 | * |
---|
28 | * <p>By default this implementation of SUS shuffles the order of the individuals |
---|
29 | * in the distribution before performing selection. This isn't always present in classic |
---|
30 | * implementations of the algorithm but it can't hurt anything and certainly can avoid |
---|
31 | * certain pathological situations. If you'd prefer not to preshuffle, set shuffle=false |
---|
32 | * Note that we don't actually change the order of the individuals in the population -- instead |
---|
33 | * we maintain our own internal array of indices and shuffle that. |
---|
34 | * |
---|
35 | * <p>Like truncation selection, |
---|
36 | * SUS samples N individuals (with replacement) up front from the population, |
---|
37 | * Then returns those individuals one by one. |
---|
38 | * ECJ's implementation assumes that N is the size of the population -- that is, you're |
---|
39 | * going to ultimately request a whole population out of this one selection method. |
---|
40 | * This could be a false assumption: for example, if you only sometimes call this |
---|
41 | * selection method, and sometimes TournamentSelection; or if you've got multiple |
---|
42 | * pipelines. In these cases, SUS is probably a bad choice anyway. |
---|
43 | * |
---|
44 | * <p>If you ask for <i>more</i> than a population's worth of individuals, SUS tries |
---|
45 | * to handle this gracefully by reshuffling its array and starting to select over |
---|
46 | * again. But again that might suggest you are doing something wrong. |
---|
47 | * |
---|
48 | * <p><b><font color=red> |
---|
49 | * Note: Fitnesses must be non-negative. 0 is assumed to be the worst fitness. |
---|
50 | * </font></b> |
---|
51 | |
---|
52 | <p><b>Typical Number of Individuals Produced Per <tt>produce(...)</tt> call</b><br> |
---|
53 | Always 1. |
---|
54 | |
---|
55 | |
---|
56 | <p><b>Parameters</b><br> |
---|
57 | <table> |
---|
58 | <tr><td valign=top><i>base.</i><tt>shuffle</tt><br> |
---|
59 | <font size=-1> bool = <tt>true</tt> (default) or <tt>false</tt></font></td> |
---|
60 | <td valign=top>(should we preshuffle the array before doing selection?)</td></tr> |
---|
61 | |
---|
62 | </table> |
---|
63 | <p><b>Default Base</b><br> |
---|
64 | select.sus |
---|
65 | |
---|
66 | * |
---|
67 | * @author Sean Luke |
---|
68 | * @version 1.0 |
---|
69 | */ |
---|
70 | |
---|
71 | public class SUSSelection extends SelectionMethod |
---|
72 | { |
---|
73 | /** Default base */ |
---|
74 | public static final String P_SUS = "sus"; |
---|
75 | public static final String P_SHUFFLE = "shuffle"; |
---|
76 | |
---|
77 | /** An array of pointers to individuals in the population, shuffled along with the fitnesses array. */ |
---|
78 | public int[] indices; |
---|
79 | /** The distribution of fitnesses. */ |
---|
80 | public float[] fitnesses; |
---|
81 | |
---|
82 | /** Should we shuffle first? */ |
---|
83 | public boolean shuffle = true; |
---|
84 | /** The floating point value to consider for the next selected individual. */ |
---|
85 | public float offset = 0.0f; |
---|
86 | /** The index in the array of the last individual selected. */ |
---|
87 | public int lastIndex; |
---|
88 | /** How many samples have been done? */ |
---|
89 | public int steps; |
---|
90 | |
---|
91 | public Parameter defaultBase() |
---|
92 | { |
---|
93 | return SelectDefaults.base().push(P_SUS); |
---|
94 | } |
---|
95 | |
---|
96 | public void setup(final EvolutionState state, final Parameter base) |
---|
97 | { |
---|
98 | super.setup(state,base); |
---|
99 | |
---|
100 | Parameter def = defaultBase(); |
---|
101 | shuffle = state.parameters.getBoolean(base.push(P_SHUFFLE),def.push(P_SHUFFLE),true); |
---|
102 | } |
---|
103 | |
---|
104 | /* Largely stolen from sim.util.Bag. Shuffles both the indices and the floats */ |
---|
105 | void shuffle(MersenneTwisterFast random) |
---|
106 | { |
---|
107 | int numObjs = fitnesses.length; |
---|
108 | float[] fitnesses = this.fitnesses; |
---|
109 | int[] indices = this.indices; |
---|
110 | |
---|
111 | float f; |
---|
112 | int i; |
---|
113 | int rand; |
---|
114 | |
---|
115 | for(int x=numObjs-1; x >= 1 ; x--) |
---|
116 | { |
---|
117 | rand = random.nextInt(x+1); |
---|
118 | f = fitnesses[x]; |
---|
119 | fitnesses[x] = fitnesses[rand]; |
---|
120 | fitnesses[rand] = f; |
---|
121 | |
---|
122 | i = indices[x]; |
---|
123 | indices[x] = indices[rand]; |
---|
124 | indices[rand] = i; |
---|
125 | } |
---|
126 | } |
---|
127 | |
---|
128 | // don't need clone etc. |
---|
129 | public void prepareToProduce(final EvolutionState s, |
---|
130 | final int subpopulation, |
---|
131 | final int thread) |
---|
132 | { |
---|
133 | lastIndex = 0; |
---|
134 | steps = 0; |
---|
135 | |
---|
136 | // compute offset |
---|
137 | offset = (float)(s.random[thread].nextDouble() / fitnesses.length); |
---|
138 | |
---|
139 | // load fitnesses but don't build distribution yet |
---|
140 | fitnesses = new float[s.population.subpops[subpopulation].individuals.length]; |
---|
141 | for(int x=0;x<fitnesses.length;x++) |
---|
142 | { |
---|
143 | fitnesses[x] = ((Individual)(s.population.subpops[subpopulation].individuals[x])).fitness.fitness(); |
---|
144 | if (fitnesses[x] < 0) // uh oh |
---|
145 | s.output.fatal("Discovered a negative fitness value. SUSSelection requires that all fitness values be non-negative(offending subpopulation #" + subpopulation + ")"); |
---|
146 | } |
---|
147 | |
---|
148 | // construct and optionally shuffle fitness distribution and indices |
---|
149 | indices = new int[s.population.subpops[subpopulation].individuals.length]; |
---|
150 | for(int i=0;i<indices.length;i++) indices[i] = i; |
---|
151 | if (shuffle) shuffle(s.random[thread]); |
---|
152 | |
---|
153 | // organize the distribution. All zeros in fitness is fine |
---|
154 | RandomChoice.organizeDistribution(fitnesses, true); |
---|
155 | } |
---|
156 | |
---|
157 | public int produce(final int subpopulation, |
---|
158 | final EvolutionState state, |
---|
159 | final int thread) |
---|
160 | { |
---|
161 | if (steps >= fitnesses.length) // we've gone too far, clearly an error |
---|
162 | { |
---|
163 | state.output.warning("SUSSelection was asked for too many individuals, so we're re-shuffling. This will give you proper results, but it might suggest an error in your code."); |
---|
164 | boolean s = shuffle; |
---|
165 | shuffle = true; |
---|
166 | prepareToProduce(state, subpopulation, thread); // rebuild |
---|
167 | shuffle = s; // just in case |
---|
168 | } |
---|
169 | |
---|
170 | // find the next index |
---|
171 | for( /* empty */ ; lastIndex < fitnesses.length - 1; lastIndex++) |
---|
172 | if ((lastIndex == 0 || offset >= fitnesses[lastIndex - 1]) && offset < fitnesses[lastIndex]) |
---|
173 | break; |
---|
174 | |
---|
175 | offset += (float)(1.0 / fitnesses.length); // update for next time |
---|
176 | steps++; |
---|
177 | return indices[lastIndex]; |
---|
178 | } |
---|
179 | } |
---|