[6152] | 1 | /* |
---|
| 2 | Copyright 2006 by Sean Luke |
---|
| 3 | Licensed under the Academic Free License version 3.0 |
---|
| 4 | See the file "LICENSE" for more information |
---|
| 5 | */ |
---|
| 6 | |
---|
| 7 | |
---|
| 8 | package ec.select; |
---|
| 9 | import ec.util.*; |
---|
| 10 | import ec.*; |
---|
| 11 | |
---|
| 12 | /* |
---|
| 13 | * SUSSelection.java |
---|
| 14 | * |
---|
| 15 | * Created: Thu Feb 12 16:19:52 EST 2009 |
---|
| 16 | * By: Sean Luke |
---|
| 17 | */ |
---|
| 18 | |
---|
| 19 | /** |
---|
| 20 | * Picks individuals in a population using the Stochastic Universal Selection (SUS) process, using |
---|
| 21 | * fitnesses as returned by their fitness() methods. This is expensive to |
---|
| 22 | * set up and bring down, so it's not appropriate for steady-state evolution. |
---|
| 23 | * If you're not familiar with the relative advantages of |
---|
| 24 | * selection methods and just want a good one, |
---|
| 25 | * use TournamentSelection instead. Not appropriate for |
---|
| 26 | * multiobjective fitnesses. |
---|
| 27 | * |
---|
| 28 | * <p>By default this implementation of SUS shuffles the order of the individuals |
---|
| 29 | * in the distribution before performing selection. This isn't always present in classic |
---|
| 30 | * implementations of the algorithm but it can't hurt anything and certainly can avoid |
---|
| 31 | * certain pathological situations. If you'd prefer not to preshuffle, set shuffle=false |
---|
| 32 | * Note that we don't actually change the order of the individuals in the population -- instead |
---|
| 33 | * we maintain our own internal array of indices and shuffle that. |
---|
| 34 | * |
---|
| 35 | * <p>Like truncation selection, |
---|
| 36 | * SUS samples N individuals (with replacement) up front from the population, |
---|
| 37 | * Then returns those individuals one by one. |
---|
| 38 | * ECJ's implementation assumes that N is the size of the population -- that is, you're |
---|
| 39 | * going to ultimately request a whole population out of this one selection method. |
---|
| 40 | * This could be a false assumption: for example, if you only sometimes call this |
---|
| 41 | * selection method, and sometimes TournamentSelection; or if you've got multiple |
---|
| 42 | * pipelines. In these cases, SUS is probably a bad choice anyway. |
---|
| 43 | * |
---|
| 44 | * <p>If you ask for <i>more</i> than a population's worth of individuals, SUS tries |
---|
| 45 | * to handle this gracefully by reshuffling its array and starting to select over |
---|
| 46 | * again. But again that might suggest you are doing something wrong. |
---|
| 47 | * |
---|
| 48 | * <p><b><font color=red> |
---|
| 49 | * Note: Fitnesses must be non-negative. 0 is assumed to be the worst fitness. |
---|
| 50 | * </font></b> |
---|
| 51 | |
---|
| 52 | <p><b>Typical Number of Individuals Produced Per <tt>produce(...)</tt> call</b><br> |
---|
| 53 | Always 1. |
---|
| 54 | |
---|
| 55 | |
---|
| 56 | <p><b>Parameters</b><br> |
---|
| 57 | <table> |
---|
| 58 | <tr><td valign=top><i>base.</i><tt>shuffle</tt><br> |
---|
| 59 | <font size=-1> bool = <tt>true</tt> (default) or <tt>false</tt></font></td> |
---|
| 60 | <td valign=top>(should we preshuffle the array before doing selection?)</td></tr> |
---|
| 61 | |
---|
| 62 | </table> |
---|
| 63 | <p><b>Default Base</b><br> |
---|
| 64 | select.sus |
---|
| 65 | |
---|
| 66 | * |
---|
| 67 | * @author Sean Luke |
---|
| 68 | * @version 1.0 |
---|
| 69 | */ |
---|
| 70 | |
---|
| 71 | public class SUSSelection extends SelectionMethod |
---|
| 72 | { |
---|
| 73 | /** Default base */ |
---|
| 74 | public static final String P_SUS = "sus"; |
---|
| 75 | public static final String P_SHUFFLE = "shuffle"; |
---|
| 76 | |
---|
| 77 | /** An array of pointers to individuals in the population, shuffled along with the fitnesses array. */ |
---|
| 78 | public int[] indices; |
---|
| 79 | /** The distribution of fitnesses. */ |
---|
| 80 | public float[] fitnesses; |
---|
| 81 | |
---|
| 82 | /** Should we shuffle first? */ |
---|
| 83 | public boolean shuffle = true; |
---|
| 84 | /** The floating point value to consider for the next selected individual. */ |
---|
| 85 | public float offset = 0.0f; |
---|
| 86 | /** The index in the array of the last individual selected. */ |
---|
| 87 | public int lastIndex; |
---|
| 88 | /** How many samples have been done? */ |
---|
| 89 | public int steps; |
---|
| 90 | |
---|
| 91 | public Parameter defaultBase() |
---|
| 92 | { |
---|
| 93 | return SelectDefaults.base().push(P_SUS); |
---|
| 94 | } |
---|
| 95 | |
---|
| 96 | public void setup(final EvolutionState state, final Parameter base) |
---|
| 97 | { |
---|
| 98 | super.setup(state,base); |
---|
| 99 | |
---|
| 100 | Parameter def = defaultBase(); |
---|
| 101 | shuffle = state.parameters.getBoolean(base.push(P_SHUFFLE),def.push(P_SHUFFLE),true); |
---|
| 102 | } |
---|
| 103 | |
---|
| 104 | /* Largely stolen from sim.util.Bag. Shuffles both the indices and the floats */ |
---|
| 105 | void shuffle(MersenneTwisterFast random) |
---|
| 106 | { |
---|
| 107 | int numObjs = fitnesses.length; |
---|
| 108 | float[] fitnesses = this.fitnesses; |
---|
| 109 | int[] indices = this.indices; |
---|
| 110 | |
---|
| 111 | float f; |
---|
| 112 | int i; |
---|
| 113 | int rand; |
---|
| 114 | |
---|
| 115 | for(int x=numObjs-1; x >= 1 ; x--) |
---|
| 116 | { |
---|
| 117 | rand = random.nextInt(x+1); |
---|
| 118 | f = fitnesses[x]; |
---|
| 119 | fitnesses[x] = fitnesses[rand]; |
---|
| 120 | fitnesses[rand] = f; |
---|
| 121 | |
---|
| 122 | i = indices[x]; |
---|
| 123 | indices[x] = indices[rand]; |
---|
| 124 | indices[rand] = i; |
---|
| 125 | } |
---|
| 126 | } |
---|
| 127 | |
---|
| 128 | // don't need clone etc. |
---|
| 129 | public void prepareToProduce(final EvolutionState s, |
---|
| 130 | final int subpopulation, |
---|
| 131 | final int thread) |
---|
| 132 | { |
---|
| 133 | lastIndex = 0; |
---|
| 134 | steps = 0; |
---|
| 135 | |
---|
| 136 | // compute offset |
---|
| 137 | offset = (float)(s.random[thread].nextDouble() / fitnesses.length); |
---|
| 138 | |
---|
| 139 | // load fitnesses but don't build distribution yet |
---|
| 140 | fitnesses = new float[s.population.subpops[subpopulation].individuals.length]; |
---|
| 141 | for(int x=0;x<fitnesses.length;x++) |
---|
| 142 | { |
---|
| 143 | fitnesses[x] = ((Individual)(s.population.subpops[subpopulation].individuals[x])).fitness.fitness(); |
---|
| 144 | if (fitnesses[x] < 0) // uh oh |
---|
| 145 | s.output.fatal("Discovered a negative fitness value. SUSSelection requires that all fitness values be non-negative(offending subpopulation #" + subpopulation + ")"); |
---|
| 146 | } |
---|
| 147 | |
---|
| 148 | // construct and optionally shuffle fitness distribution and indices |
---|
| 149 | indices = new int[s.population.subpops[subpopulation].individuals.length]; |
---|
| 150 | for(int i=0;i<indices.length;i++) indices[i] = i; |
---|
| 151 | if (shuffle) shuffle(s.random[thread]); |
---|
| 152 | |
---|
| 153 | // organize the distribution. All zeros in fitness is fine |
---|
| 154 | RandomChoice.organizeDistribution(fitnesses, true); |
---|
| 155 | } |
---|
| 156 | |
---|
| 157 | public int produce(final int subpopulation, |
---|
| 158 | final EvolutionState state, |
---|
| 159 | final int thread) |
---|
| 160 | { |
---|
| 161 | if (steps >= fitnesses.length) // we've gone too far, clearly an error |
---|
| 162 | { |
---|
| 163 | state.output.warning("SUSSelection was asked for too many individuals, so we're re-shuffling. This will give you proper results, but it might suggest an error in your code."); |
---|
| 164 | boolean s = shuffle; |
---|
| 165 | shuffle = true; |
---|
| 166 | prepareToProduce(state, subpopulation, thread); // rebuild |
---|
| 167 | shuffle = s; // just in case |
---|
| 168 | } |
---|
| 169 | |
---|
| 170 | // find the next index |
---|
| 171 | for( /* empty */ ; lastIndex < fitnesses.length - 1; lastIndex++) |
---|
| 172 | if ((lastIndex == 0 || offset >= fitnesses[lastIndex - 1]) && offset < fitnesses[lastIndex]) |
---|
| 173 | break; |
---|
| 174 | |
---|
| 175 | offset += (float)(1.0 / fitnesses.length); // update for next time |
---|
| 176 | steps++; |
---|
| 177 | return indices[lastIndex]; |
---|
| 178 | } |
---|
| 179 | } |
---|