1 | /* |
---|
2 | Copyright 2006 by Sean Luke |
---|
3 | Licensed under the Academic Free License version 3.0 |
---|
4 | See the file "LICENSE" for more information |
---|
5 | */ |
---|
6 | |
---|
7 | |
---|
8 | package ec.select; |
---|
9 | import ec.util.*; |
---|
10 | import ec.*; |
---|
11 | /* |
---|
12 | * BestSelection.java |
---|
13 | * |
---|
14 | * Created: Thu Feb 10 18:52:09 2000 |
---|
15 | * By: Sean Luke |
---|
16 | */ |
---|
17 | |
---|
18 | /** |
---|
19 | * Picks among the best <i>n</i> individuals in a population in |
---|
20 | * direct proportion to their absolute |
---|
21 | * fitnesses as returned by their fitness() methods relative to the |
---|
22 | * fitnesses of the other "best" individuals in that <i>n</i>. This is expensive to |
---|
23 | * set up and bring down, so it's not appropriate for steady-state evolution. |
---|
24 | * If you're not familiar with the relative advantages of |
---|
25 | * selection methods and just want a good one, |
---|
26 | * use TournamentSelection instead. Not appropriate for |
---|
27 | * multiobjective fitnesses. |
---|
28 | * |
---|
29 | * <p><b><font color=red> |
---|
30 | * Note: Fitnesses must be non-negative. 0 is assumed to be the worst fitness. |
---|
31 | * </font></b> |
---|
32 | * |
---|
33 | <p><b>Typical Number of Individuals Produced Per <tt>produce(...)</tt> call</b><br> |
---|
34 | Always 1. |
---|
35 | |
---|
36 | <p><b>Parameters</b><br> |
---|
37 | <table> |
---|
38 | <tr><td valign=top><i>base.</i><tt>pick-worst</tt><br> |
---|
39 | <font size=-1> bool = <tt>true</tt> or <tt>false</tt> (default)</font></td> |
---|
40 | <td valign=top>(should we pick from among the <i>worst n</i> individuals in the tournament instead of the <i>best n</i>?)</td></tr> |
---|
41 | <tr><td valign=top><i>base.</i><tt>n</tt><br> |
---|
42 | <font size=-1> int > 0 (default is 1)</font></td> |
---|
43 | <td valign=top>(the number of best-individuals to select from)</td></tr> |
---|
44 | </table> |
---|
45 | |
---|
46 | <p><b>Default Base</b><br> |
---|
47 | select.best |
---|
48 | |
---|
49 | * @author Sean Luke |
---|
50 | * @version 1.0 |
---|
51 | */ |
---|
52 | |
---|
53 | public class BestSelection extends SelectionMethod |
---|
54 | { |
---|
55 | /** Default base */ |
---|
56 | public static final String P_BEST = "best"; |
---|
57 | public static final String P_N = "n"; |
---|
58 | public static final String P_PICKWORST = "pick-worst"; |
---|
59 | /** Sorted, normalized, totalized fitnesses for the population */ |
---|
60 | public float[] sortedFit; |
---|
61 | /** Sorted population -- since I *have* to use an int-sized |
---|
62 | individual (short gives me only 16K), |
---|
63 | I might as well just have pointers to the |
---|
64 | population itself. :-( */ |
---|
65 | public int[] sortedPop; |
---|
66 | |
---|
67 | /** Do we pick the worst instead of the best? */ |
---|
68 | public boolean pickWorst; |
---|
69 | |
---|
70 | public int bestn; |
---|
71 | |
---|
72 | public Parameter defaultBase() |
---|
73 | { |
---|
74 | return SelectDefaults.base().push(P_BEST); |
---|
75 | } |
---|
76 | |
---|
77 | // don't need clone etc. |
---|
78 | |
---|
79 | public void setup(final EvolutionState state, final Parameter base) |
---|
80 | { |
---|
81 | super.setup(state,base); |
---|
82 | |
---|
83 | Parameter def = defaultBase(); |
---|
84 | |
---|
85 | bestn = |
---|
86 | state.parameters.getInt(base.push(P_N),def.push(P_N),1); |
---|
87 | if (bestn == 0 ) |
---|
88 | state.output.fatal("n must be an integer greater than 0", base.push(P_N),def.push(P_N)); |
---|
89 | |
---|
90 | pickWorst = state.parameters.getBoolean(base.push(P_PICKWORST),def.push(P_PICKWORST),false); |
---|
91 | } |
---|
92 | |
---|
93 | public void prepareToProduce(final EvolutionState s, |
---|
94 | final int subpopulation, |
---|
95 | final int thread) |
---|
96 | { |
---|
97 | // load sortedPop integers |
---|
98 | final Individual[] i = s.population.subpops[subpopulation].individuals; |
---|
99 | |
---|
100 | sortedPop = new int[i.length]; |
---|
101 | for(int x=0;x<sortedPop.length;x++) sortedPop[x] = x; |
---|
102 | |
---|
103 | // sort sortedPop in increasing fitness order |
---|
104 | QuickSort.qsort(sortedPop, |
---|
105 | new SortComparatorL() |
---|
106 | { |
---|
107 | public boolean lt(long a, long b) |
---|
108 | { |
---|
109 | return ((Individual)(i[(int)b])).fitness.betterThan( |
---|
110 | ((Individual)(i[(int)a])).fitness); |
---|
111 | } |
---|
112 | |
---|
113 | public boolean gt(long a, long b) |
---|
114 | { |
---|
115 | return ((Individual)(i[(int)a])).fitness.betterThan( |
---|
116 | ((Individual)(i[(int)b])).fitness); |
---|
117 | } |
---|
118 | }); |
---|
119 | |
---|
120 | // load sortedFit |
---|
121 | sortedFit = new float[Math.min(sortedPop.length,bestn)]; |
---|
122 | if (pickWorst) |
---|
123 | for(int x=0;x<sortedFit.length;x++) |
---|
124 | sortedFit[x] = ((Individual)(i[sortedPop[x]])).fitness.fitness(); |
---|
125 | else |
---|
126 | for(int x=0;x<sortedFit.length;x++) |
---|
127 | sortedFit[x] = ((Individual)(i[sortedPop[sortedPop.length-x-1]])).fitness.fitness(); |
---|
128 | |
---|
129 | for(int x=0;x<sortedFit.length;x++) |
---|
130 | { |
---|
131 | if (sortedFit[x] < 0) // uh oh |
---|
132 | s.output.fatal("Discovered a negative fitness value. BestSelection requires that all fitness values be non-negative(offending subpopulation #" + subpopulation + ")"); |
---|
133 | } |
---|
134 | |
---|
135 | |
---|
136 | // organize the distributions. All zeros in fitness is fine |
---|
137 | RandomChoice.organizeDistribution(sortedFit, true); |
---|
138 | } |
---|
139 | |
---|
140 | public int produce(final int subpopulation, |
---|
141 | final EvolutionState state, |
---|
142 | final int thread) |
---|
143 | { |
---|
144 | // Pick and return an individual from the population |
---|
145 | if (pickWorst) |
---|
146 | return sortedPop[RandomChoice.pickFromDistribution( |
---|
147 | sortedFit,state.random[thread].nextFloat())]; |
---|
148 | else |
---|
149 | return sortedPop[sortedPop.length - RandomChoice.pickFromDistribution( |
---|
150 | sortedFit,state.random[thread].nextFloat()) - 1]; |
---|
151 | } |
---|
152 | |
---|
153 | public void finishProducing(final EvolutionState s, |
---|
154 | final int subpopulation, |
---|
155 | final int thread) |
---|
156 | { |
---|
157 | // release the distributions so we can quickly |
---|
158 | // garbage-collect them if necessary |
---|
159 | sortedFit = null; |
---|
160 | sortedPop = null; |
---|
161 | } |
---|
162 | } |
---|