1 | /* |
---|
2 | Copyright 2006 by Sean Luke |
---|
3 | Licensed under the Academic Free License version 3.0 |
---|
4 | See the file "LICENSE" for more information |
---|
5 | */ |
---|
6 | |
---|
7 | |
---|
8 | package ec.rule.breed; |
---|
9 | |
---|
10 | import ec.rule.*; |
---|
11 | import ec.*; |
---|
12 | import ec.util.*; |
---|
13 | |
---|
14 | /* |
---|
15 | * RuleCrossoverPipeline.java |
---|
16 | * |
---|
17 | * Created: Tue Mar 13 15:03:12 EST 2001 |
---|
18 | * By: Sean Luke |
---|
19 | */ |
---|
20 | |
---|
21 | |
---|
22 | /** |
---|
23 | * |
---|
24 | RuleCrossoverPipeline is a BreedingPipeline which implements a simple default crossover |
---|
25 | for RuleIndividuals. Normally it takes two individuals and returns two crossed-over |
---|
26 | child individuals. Optionally, it can take two individuals, cross them over, but throw |
---|
27 | away the second child (a one-child crossover). RuleCrossoverPipeline works by iteratively taking rulesets |
---|
28 | from each individual, and migrating rules from either to the other with a certain |
---|
29 | per-rule probability. Rule crossover preserves the min and max rule restrictions. |
---|
30 | |
---|
31 | <p><b>Typical Number of Individuals Produced Per <tt>produce(...)</tt> call</b><br> |
---|
32 | 1 or 2 |
---|
33 | |
---|
34 | <p><b>Number of Sources</b><br> |
---|
35 | 2 |
---|
36 | |
---|
37 | <p><b>Parameters</b><br> |
---|
38 | <table> |
---|
39 | <tr><td valign=top><i>base</i>.<tt>toss</tt><br> |
---|
40 | <font size=-1>bool = <tt>true</tt> or <tt>false</tt> (default)</font>/td> |
---|
41 | <td valign=top>(after crossing over with the first new individual, should its second sibling individual be thrown away instead of adding it to the population?)</td></tr> |
---|
42 | <tr><td valign=top><i>base</i>.<tt>prob</tt><br> |
---|
43 | <font size=-1>0.0 <= float < 1.0, or 0.5 (default)</font>/td> |
---|
44 | <td valign=top>(probability that a rule will cross over from one individual to the other)</td></tr> |
---|
45 | </table> |
---|
46 | |
---|
47 | <p><b>Default Base</b><br> |
---|
48 | rule.xover |
---|
49 | |
---|
50 | * @author Sean Luke |
---|
51 | * @version 1.0 |
---|
52 | */ |
---|
53 | |
---|
54 | public class RuleCrossoverPipeline extends BreedingPipeline |
---|
55 | { |
---|
56 | public static final String P_TOSS = "toss"; |
---|
57 | public static final String P_CROSSOVER = "xover"; |
---|
58 | public static final String P_CROSSOVERPROB = "crossover-prob"; |
---|
59 | public static final int INDS_PRODUCED = 2; |
---|
60 | public static final int NUM_SOURCES = 2; |
---|
61 | |
---|
62 | /** Should the pipeline discard the second parent after crossing over? */ |
---|
63 | public boolean tossSecondParent; |
---|
64 | |
---|
65 | /** What is the probability of a rule migrating? */ |
---|
66 | public float ruleCrossProbability; |
---|
67 | |
---|
68 | /** Temporary holding place for parents */ |
---|
69 | RuleIndividual parents[]; |
---|
70 | |
---|
71 | public RuleCrossoverPipeline() { parents = new RuleIndividual[2]; } |
---|
72 | public Parameter defaultBase() { return RuleDefaults.base().push(P_CROSSOVER); } |
---|
73 | |
---|
74 | /** Returns 2 */ |
---|
75 | public int numSources() { return NUM_SOURCES; } |
---|
76 | |
---|
77 | public Object clone() |
---|
78 | { |
---|
79 | RuleCrossoverPipeline c = (RuleCrossoverPipeline)(super.clone()); |
---|
80 | |
---|
81 | // deep-cloned stuff |
---|
82 | c.parents = (RuleIndividual[]) parents.clone(); |
---|
83 | |
---|
84 | return c; |
---|
85 | } |
---|
86 | |
---|
87 | public void setup(final EvolutionState state, final Parameter base) |
---|
88 | { |
---|
89 | super.setup(state,base); |
---|
90 | Parameter def = defaultBase(); |
---|
91 | tossSecondParent = state.parameters.getBoolean(base.push(P_TOSS), |
---|
92 | def.push(P_TOSS),false); |
---|
93 | ruleCrossProbability = state.parameters.getFloatWithDefault(base.push(P_CROSSOVERPROB), |
---|
94 | def.push(P_CROSSOVERPROB),0.5f); |
---|
95 | if (ruleCrossProbability > 1.0 || ruleCrossProbability < 0.0) |
---|
96 | state.output.fatal("Rule cross probability must be between 0 and 1",base.push(P_CROSSOVERPROB), |
---|
97 | def.push(P_CROSSOVERPROB)); |
---|
98 | } |
---|
99 | |
---|
100 | /** Returns 2 (unless tossing the second sibling, in which case it returns 1) */ |
---|
101 | public int typicalIndsProduced() { return (tossSecondParent? 1: INDS_PRODUCED); } |
---|
102 | |
---|
103 | public int produce(final int min, |
---|
104 | final int max, |
---|
105 | final int start, |
---|
106 | final int subpopulation, |
---|
107 | final Individual[] inds, |
---|
108 | final EvolutionState state, |
---|
109 | final int thread) |
---|
110 | |
---|
111 | { |
---|
112 | // how many individuals should we make? |
---|
113 | int n = (tossSecondParent? 1 : INDS_PRODUCED); |
---|
114 | if (n < min) n = min; |
---|
115 | if (n > max) n = max; |
---|
116 | |
---|
117 | // should we bother? |
---|
118 | if (!state.random[thread].nextBoolean(likelihood)) |
---|
119 | return reproduce(n, start, subpopulation, inds, state, thread, true); // DO produce children from source -- we've not done so already |
---|
120 | |
---|
121 | |
---|
122 | RuleInitializer initializer = ((RuleInitializer)state.initializer); |
---|
123 | |
---|
124 | for(int q=start;q<n+start; /* no increment */) // keep on going until we're filled up |
---|
125 | { |
---|
126 | // grab two individuals from our sources |
---|
127 | if (sources[0]==sources[1]) // grab from the same source |
---|
128 | { |
---|
129 | sources[0].produce(2,2,0,subpopulation,parents,state,thread); |
---|
130 | if (!(sources[0] instanceof BreedingPipeline)) // it's a selection method probably |
---|
131 | { |
---|
132 | parents[0] = (RuleIndividual)(parents[0].clone()); |
---|
133 | parents[1] = (RuleIndividual)(parents[1].clone()); |
---|
134 | } |
---|
135 | } |
---|
136 | else // grab from different sources |
---|
137 | { |
---|
138 | sources[0].produce(1,1,0,subpopulation,parents,state,thread); |
---|
139 | sources[1].produce(1,1,1,subpopulation,parents,state,thread); |
---|
140 | if (!(sources[0] instanceof BreedingPipeline)) // it's a selection method probably |
---|
141 | parents[0] = (RuleIndividual)(parents[0].clone()); |
---|
142 | if (!(sources[1] instanceof BreedingPipeline)) // it's a selection method probably |
---|
143 | parents[1] = (RuleIndividual)(parents[1].clone()); |
---|
144 | } |
---|
145 | |
---|
146 | // at this point, parents[] contains our two selected individuals, |
---|
147 | // AND they're copied so we own them and can make whatever modifications |
---|
148 | // we like on them. |
---|
149 | |
---|
150 | // so we'll cross them over now. |
---|
151 | |
---|
152 | parents[0].preprocessIndividual(state,thread); |
---|
153 | parents[1].preprocessIndividual(state,thread); |
---|
154 | |
---|
155 | if( parents[0].rulesets.length != parents[1].rulesets.length ) |
---|
156 | { |
---|
157 | state.output.fatal( "The number of rule sets should be identical in both parents ( " + |
---|
158 | parents[0].rulesets.length + " : " + |
---|
159 | parents[1].rulesets.length + " )." ); |
---|
160 | } |
---|
161 | |
---|
162 | // for each set of rules (assume both individuals have the same number of rule sets) |
---|
163 | for( int x = 0 ; x < parents[0].rulesets.length ; x++ ) |
---|
164 | { |
---|
165 | RuleSet[] temp = new RuleSet[2]; |
---|
166 | while(true) |
---|
167 | { |
---|
168 | // create two new rulesets (initially empty) |
---|
169 | for( int i = 0 ; i < 2 ; i++ ) |
---|
170 | temp[i] = new RuleSet(); |
---|
171 | // split the ruleset indexed x in parent 1 |
---|
172 | temp = parents[0].rulesets[x].splitIntoTwo( state, thread, temp,ruleCrossProbability); |
---|
173 | // now temp[0] contains rules to that must go to parent[1] |
---|
174 | |
---|
175 | // split the ruleset indexed x in parent 2 (append after the split results from previous operation) |
---|
176 | temp = parents[1].rulesets[x].splitIntoTwo( state, thread, temp, 1 - ruleCrossProbability); |
---|
177 | // now temp[1] contains rules that must go to parent[0] |
---|
178 | |
---|
179 | // ensure that there are enough rules |
---|
180 | if (temp[0].numRules >= parents[0].rulesets[x].constraints(initializer).minSize && |
---|
181 | temp[0].numRules <= parents[0].rulesets[x].constraints(initializer).maxSize && |
---|
182 | temp[1].numRules >= parents[1].rulesets[x].constraints(initializer).minSize && |
---|
183 | temp[1].numRules <= parents[1].rulesets[x].constraints(initializer).maxSize) |
---|
184 | break; |
---|
185 | |
---|
186 | temp = new RuleSet[2]; |
---|
187 | } |
---|
188 | |
---|
189 | // copy the results in the rulesets of the parents |
---|
190 | parents[0].rulesets[x].copyNoClone(temp[1]); |
---|
191 | parents[1].rulesets[x].copyNoClone(temp[0]); |
---|
192 | } |
---|
193 | |
---|
194 | parents[0].postprocessIndividual(state,thread); |
---|
195 | parents[1].postprocessIndividual(state,thread); |
---|
196 | |
---|
197 | parents[0].evaluated=false; |
---|
198 | parents[1].evaluated=false; |
---|
199 | |
---|
200 | // add 'em to the population |
---|
201 | inds[q] = parents[0]; |
---|
202 | q++; |
---|
203 | if (q<n+start && !tossSecondParent) |
---|
204 | { |
---|
205 | inds[q] = parents[1]; |
---|
206 | q++; |
---|
207 | } |
---|
208 | } |
---|
209 | return n; |
---|
210 | } |
---|
211 | } |
---|
212 | |
---|
213 | |
---|
214 | |
---|
215 | |
---|
216 | |
---|
217 | |
---|
218 | |
---|