Free cookie consent management tool by TermsFeed Policy Generator

source: branches/OKBJavaConnector/ECJClient/src/ec/rule/RuleSetConstraints.java @ 10207

Last change on this file since 10207 was 6152, checked in by bfarka, 14 years ago

added ecj and custom statistics to communicate with the okb services #1441

File size: 14.8 KB
Line 
1/*
2  Copyright 2006 by Sean Luke and George Mason University
3  Licensed under the Academic Free License version 3.0
4  See the file "LICENSE" for more information
5*/
6
7
8package ec.rule;
9import ec.*;
10import ec.util.*;
11
12/*
13 * RuleSetConstraints.java
14 *
15 * Created: Tue Feb 20 13:26:00 2001
16 * By: Liviu Panait and Sean Luke
17 */
18
19/**
20 * RuleSetConstraints is an basic class for constraints applicable to rulesets.
21 * There are two categories of parameters associated with this class.  First, there are parameters
22 * which guide the initial number of rules to be created when a ruleset is initialized for
23 * the first time, or totally reset.  Second, there are parameters which indicate how rulesets
24 * are to be mutated under the "default" rule mutation operator.
25 *
26 * <p>First the initialization parameters.  You need to specify a distribution from which
27 * the system will pick random integer values X.  When a ruleset is to be initialized, a
28 * random value X is picked from this distribution, and the ruleset will be created with X initial rules.
29 * You can specify the distribution in one of two ways.  First, you can specify a minimum and maximum
30 * number of rules; the system will then pick an X uniformly from between the min and the max.
31 * Second, you can specify a full distribution of size probabilities for more control.  For example,
32 * to specify that the system should make individuals with 0 rules 0.1 of the time, 1 rule 0.2 of the time,
33 * and 2 rules 0.7 of the time, you set <i>reset-num-sizes</i> to 3 (for rule sizes up to but not including 3),
34 * and then set  reset-size.0 to 0.1, reset-size.1 to 0.2, and reset-size.2 to 0.7.
35 *
36 * <p>Next the mutation parameters.  The default mutation procedure works as follows.  First, every rule
37 * in the ruleset is mutated.  It is up to the rule to determine by how much or whether it will be mutated
38 * (perhaps by flipping a coin) when its mutate function is called.  Second, the system repeatedly flips
39 * a coin with "p-del" probability of being true, until it comes up false.  The number of times it came up
40 * true is the number of rules to remove from the ruleset; rules to be removed are chosen at random.
41 * Third, the system repeatedly flips
42 * a coin with "p-add" probability of being true, until it comes up false.  The number of times it came up
43 * true is the number of new randomly-generated rules to add to the ruleset; rules are added to the end of the array.
44 * Fourth, with "p-rand-order" probability, the order of rules in the ruleset array is randomized; this last
45 * item might or might not matter to you depending on whether or not your rule interpreter differs depending on rule order. 
46 *
47 * @author Liviu Panait and Sean Luke
48 * @version 1.0
49
50 <p><b>Parameters</b><br>
51 <table>
52 <tr><td valign=top><i>base</i>.<tt>size</tt><br>
53 <font size=-1>int &gt;= 1</font></td>
54 <td valign=top>(number of rule set constraints)</td></tr>
55
56 <tr><td valign=top><i>base.n</i>.<tt>name</tt><br>
57 <font size=-1>String</font></td>
58 <td valign=top>(name of rule set constraint <i>n</i>)</td></tr>
59
60 <tr><td valign=top><i>base.n</i>.<tt>reset-min-size</tt><br>
61 <font size=-1>int >= 0 (default=0)</font></td>
62 <td valign=top>(for rule set constraint <i>n</i>, the minimum number of rules that rulesets may contain upon initialization (resetting), see discussion above)</td></tr>
63
64 <tr><td valign=top><i>base.n</i>.<tt>reset-max-size</tt><br>
65 <font size=-1>int >= <i>base.n</i>.<tt>reset-min-size</tt> (default=0)</font></td>
66 <td valign=top>(for rule set constraint <i>n</i>, the maximum number of rules that rulesets may contain upon initialization (resetting), see discussion above)</td></tr>
67
68 <tr><td valign=top><i>base.n</i>.<tt>reset-num-sizes</tt><br>
69 <font size=-1>int >= 0</font> (default=unset)</td>
70 <td valign=top>(for rule set constraint <i>n</i>, the number of sizes in the size distribution for initializtion, see discussion above)</td></tr>
71
72 <tr><td valign=top><i>base.n</i>.<tt>reset-size</tt>.<i>i</i><br>
73 <font size=-1>0.0 <= float <= 1.0</font></td>
74 <td valign=top>(for rule set constraint <i>n</i>, the probability that <i>i</i> will be chosen as the number of rules upon initialization, see discussion above)</td></tr>
75
76 <tr><td valign=top><i>base.n</i>.<tt>p-add</tt><br>
77 <font size=-1>0.0 <= float <= 1.0</font></td>
78 <td valign=top>(the probability that a new rule will be added, see discussion)</td></tr>
79
80 <tr><td valign=top><i>base.n</i>.<tt>p-del</tt><br>
81 <font size=-1>0.0 <= float <= 1.0</font></td>
82 <td valign=top>(the probability that a rule will be deleted, see discussion)</td></tr>
83
84 <tr><td valign=top><i>base.n</i>.<tt>p-rand-order</tt><br>
85 <font size=-1>0.0 <= float <= 1.0</font></td>
86 <td valign=top>(the probability that the rules' order will be randomized, see discussion)</td></tr>
87 </table>
88
89*/
90public class RuleSetConstraints implements Clique
91    {
92    /** The size of a byte */
93//    public static final int SIZE_OF_BYTE = 256;
94    public final static String P_NAME = "name";
95    /** num rulesets */
96//    public final static String P_SIZE = "size";
97    public final static String P_RULE = "rule";  // our prototype
98//    public static final int CHECK_BOUNDARY = 8;
99    public static final String P_RESETMINSIZE = "reset-min-size";
100    public static final String P_RESETMAXSIZE = "reset-max-size";
101    public static final String P_NUMSIZES = "reset-num-sizes";
102    public static final String P_RESETSIZE = "reset-size";
103
104    public static final String P_MINSIZE = "min-size";
105    public static final String P_MAXSIZE = "max-size";
106
107    public int minSize;   // the minimum legal size
108    public int maxSize;   // the maximum legal size
109
110    public int resetMinSize;  // the minium possible size -- if unused, it's 0, but 0 is also a valid number, so check sizeDistribution==null
111    public int resetMaxSize;  // the maximum possible size -- if unused, it's 0, but 0 is also a valid number, so check sizeDistribution==null
112    public float[] sizeDistribution;
113
114    // probability of adding a random rule to the rule set
115    public static final String P_ADD_PROB = "p-add";
116    public float p_add;
117
118    // probability of removing a random rule from the rule set
119    public static final String P_DEL_PROB = "p-del";
120    public float p_del;
121
122    // probability of randomizing the rule order in the rule set
123    public static final String P_RAND_ORDER_PROB = "p-rand-order";
124    public float p_randorder;
125
126    /** Assuming that either resetMinSize and resetMaxSize, or sizeDistribution, is defined,
127        picks a random size from resetMinSize...resetMaxSize inclusive, or randomly
128        from sizeDistribution. */
129    public int pickSize(final EvolutionState state, final int thread)
130        {
131        if (sizeDistribution!=null)
132            // pick from distribution
133            return RandomChoice.pickFromDistribution(
134                sizeDistribution,
135                state.random[thread].nextFloat());
136        else
137            // pick from resetMinSize...resetMaxSize
138            return state.random[thread].nextInt(resetMaxSize-resetMinSize+1) + resetMinSize;
139        }
140
141    /**
142       The prototype of the Rule that will be used in the RuleSet
143       (the RuleSet contains only rules with the specified prototype).
144    */
145    public Rule rulePrototype;
146
147    /**
148       Returns a stochastic value picked to specify the number of rules
149       to generate when calling reset() on this kind of Rule.  The default
150       version picks from the min/max or distribution, but you can override
151       this to do whatever kind of thing you like here.
152    */
153    public int numRulesForReset(final RuleSet ruleset,
154        final EvolutionState state, final int thread)
155        {
156        // the default just uses pickSize
157        return pickSize(state,thread);
158        }
159       
160    /** The byte value of the constraints -- we can only have 256 of them */
161    public byte constraintNumber;
162
163    /** The name of the RuleSetConstraints object */
164    public String name;
165
166    /** Converting the rule to a string ( the name ) */
167    public String toString() { return name; }
168   
169    /** Sets up all the RuleSetConstraints, loading them from the parameter
170        file.  This must be called before anything is called which refers
171        to a type by name. */
172
173    /** You must guarantee that after calling constraintsFor(...) one or
174        several times, you call state.output.exitIfErrors() once. */
175
176    public static RuleSetConstraints constraintsFor(final String constraintsName,
177        final EvolutionState state)
178        {
179        RuleSetConstraints myConstraints = (RuleSetConstraints)(((RuleInitializer)state.initializer).ruleSetConstraintRepository.get(constraintsName));
180        if (myConstraints==null)
181            state.output.error("The rule constraints \"" + constraintsName + "\" could not be found.");
182        return myConstraints;
183        }
184
185
186    public void setup(final EvolutionState state, final Parameter base)
187        {
188        // What's my name?
189        name = state.parameters.getString(base.push(P_NAME),null);
190        if (name==null)
191            state.output.fatal("No name was given for this RuleSetConstraints.",
192                base.push(P_NAME));
193
194        // Register me
195        RuleSetConstraints old_constraints = (RuleSetConstraints)(((RuleInitializer)state.initializer).ruleSetConstraintRepository.put(name,this));
196        if (old_constraints != null)
197            state.output.fatal("The rule constraints \"" + name + "\" has been defined multiple times.", base.push(P_NAME));
198       
199        // load my prototypical Rule
200        rulePrototype = (Rule)(state.parameters.getInstanceForParameter(base.push(P_RULE),null,Rule.class));
201        rulePrototype.setup(state,base.push(P_RULE));
202
203        p_add = state.parameters.getFloat( base.push( P_ADD_PROB ), null, 0 );
204        if( p_add < 0 || p_add > 1 )
205            {
206            state.output.fatal( "Parameter not found, or its value is outside of allowed range [0..1].",
207                base.push( P_ADD_PROB ) );
208            }
209        p_del = state.parameters.getFloat( base.push( P_DEL_PROB ), null, 0 );
210        if( p_del < 0 || p_del > 1 )
211            {
212            state.output.fatal( "Parameter not found, or its value is outside of allowed range [0..1].",
213                base.push( P_DEL_PROB ) );
214            }
215
216        p_randorder = state.parameters.getFloat( base.push( P_RAND_ORDER_PROB ), null, 0 );
217        if( p_randorder < 0 || p_randorder > 1 )
218            {
219            state.output.fatal( "Parameter not found, or its value is outside of allowed range [0..1].",
220                base.push( P_RAND_ORDER_PROB ) );
221            }
222
223        // now, we are going to load EITHER min/max size OR a size distribution, or both
224        // (the size distribution takes precedence)
225
226        // reset min and max size
227
228        if (state.parameters.exists(base.push(P_RESETMINSIZE), null) ||
229            state.parameters.exists(base.push(P_RESETMAXSIZE), null))
230            {
231            if (!(state.parameters.exists(base.push(P_RESETMAXSIZE), null)))
232                state.output.error("This RuleSetConstraints has a " +
233                    P_RESETMINSIZE + " but not a " + P_RESETMAXSIZE + ".");
234           
235            resetMinSize = state.parameters.getInt(
236                base.push(P_RESETMINSIZE), null,0);
237            if (resetMinSize==-1)
238                state.output.error("If min&max are defined, RuleSetConstraints must have a min size >= 0.",
239                    base.push(P_RESETMINSIZE), null);
240           
241            resetMaxSize = state.parameters.getInt(
242                base.push(P_RESETMAXSIZE), null,0);
243            if (resetMaxSize==-1)
244                state.output.error("If min&max are defined, RuleSetConstraints must have a max size >= 0.",
245                    base.push(P_RESETMAXSIZE), null);
246
247            if (resetMinSize > resetMaxSize)
248                state.output.error(
249                    "If min&max are defined, RuleSetConstraints must have min size <= max size.",
250                    base.push(P_RESETMINSIZE), null);
251            state.output.exitIfErrors();
252            }
253
254        // load sizeDistribution
255
256        if (state.parameters.exists(base.push(P_NUMSIZES),
257                null))
258            {
259            int siz = state.parameters.getInt(
260                base.push(P_NUMSIZES), null,1);
261            if (siz==0)
262                state.output.fatal("The number of sizes in the RuleSetConstraints's distribution must be >= 1. ");
263            sizeDistribution = new float[siz];
264           
265            float sum = 0.0f;
266            for(int x=0;x<siz;x++)
267                {
268                sizeDistribution[x] = state.parameters.getFloat(
269                    base.push(P_RESETSIZE).push(""+x),null, 0.0f);
270                if (sizeDistribution[x]<0.0)
271                    {
272                    state.output.warning(
273                        "Distribution value #" + x + " negative or not defined, assumed to be 0.0",
274                        base.push(P_RESETSIZE).push(""+x),null);
275                    sizeDistribution[x] = 0.0f;
276                    }
277                sum += sizeDistribution[x];
278                }
279            if (sum>1.0)
280                state.output.warning(
281                    "Distribution sums to greater than 1.0",
282                    base.push(P_RESETSIZE),
283                    null);
284            if (sum==0.0)
285                state.output.fatal(
286                    "Distribution is all 0's",
287                    base.push(P_RESETSIZE),
288                    null);
289
290            // normalize and prepare
291            RandomChoice.organizeDistribution(sizeDistribution);
292            }
293       
294        if (state.parameters.exists(base.push(P_MINSIZE), null))
295            minSize = state.parameters.getInt( base.push( P_MINSIZE ), null, 0 );
296        else minSize = 0;
297       
298        if (state.parameters.exists(base.push(P_MAXSIZE), null))
299            maxSize = state.parameters.getInt( base.push( P_MAXSIZE ), null, 0 );
300        else maxSize = Integer.MAX_VALUE;
301
302        // sanity checks
303        if (minSize > maxSize)
304            {
305            state.output.fatal("Cannot have min size greater than max size : (" + minSize + " > " + maxSize + ")",base.push(P_MINSIZE), null);
306            }
307       
308        if (sizeDistribution != null)
309            {
310            if (minSize!=0)
311                state.output.fatal("Using size distribution, but min size is not 0",
312                    base.push(P_MINSIZE), null);
313            if (sizeDistribution.length - 1 > maxSize)
314                state.output.fatal("Using size distribution whose maximum size is higher than max size",
315                    base.push(P_MAXSIZE), null);
316            }
317        else
318            {
319            if (resetMinSize < minSize)
320                state.output.fatal("Cannot have min size greater than reset min size : (" + minSize + " > " + resetMinSize + ")",base.push(P_MINSIZE), null);
321            if (resetMaxSize > maxSize)
322                state.output.fatal("Cannot have max size less than reset max size : (" + maxSize + " > " + resetMaxSize + ")",base.push(P_MAXSIZE), null);               
323            }
324
325        }
326    }
327
Note: See TracBrowser for help on using the repository browser.