1 | /* |
---|
2 | Copyright 2006 by Ankur Desai, Sean Luke, and George Mason University |
---|
3 | Licensed under the Academic Free License version 3.0 |
---|
4 | See the file "LICENSE" for more information |
---|
5 | */ |
---|
6 | |
---|
7 | package ec.pso; |
---|
8 | |
---|
9 | import ec.*; |
---|
10 | import ec.util.*; |
---|
11 | import ec.vector.*; |
---|
12 | import java.io.*; |
---|
13 | |
---|
14 | /** |
---|
15 | * PSOSubpopulation.java |
---|
16 | * |
---|
17 | |
---|
18 | <p>Particle Swarm Optimization (PSO) is a population-oriented stochastic search |
---|
19 | technique similar to genetic algorithms, evolutionary strategies, and other evolutionary |
---|
20 | computation algorithms. The technique discovers solutions for N-dimensional |
---|
21 | parameterized problems: basically it discovers the point in N-dimensional space which |
---|
22 | maximizes some quality function. |
---|
23 | |
---|
24 | <p>PSOSubpopulation handles initialization and input/output of the swarm. |
---|
25 | |
---|
26 | <p><b>Parameters</b><br> |
---|
27 | <table> |
---|
28 | |
---|
29 | <tr><td valign=top><i>base</i>.<tt>neighborhood-size</tt><br> |
---|
30 | <font size=-1>integer</font></td> |
---|
31 | <td valign=top>(the number of individuals per neighborhood)<br></td></tr> |
---|
32 | |
---|
33 | <tr><td valign=top><i>base</i>.<tt>clamp</tt><br> |
---|
34 | <font size=-1>boolean</font></td> |
---|
35 | <td valign=top>(clamp the individual to stay within the bounds or not)<br></td></tr> |
---|
36 | |
---|
37 | <tr><td valign=top><i>base</i>.<tt>initial-velocity-scale</tt><br> |
---|
38 | <font size=-1>double</font></td> |
---|
39 | <td valign=top>(particles are initialized with a random velocity and this value provides bounds. |
---|
40 | A value of 1.0 means that the velocity will be within +/- the range of the genotype.)<br></td></tr> |
---|
41 | |
---|
42 | <tr><td valign=top><i>base</i>.<tt>velocity-multiplier</tt><br> |
---|
43 | <font size=-1>double</font></td> |
---|
44 | <td valign=top>(particle velocities are multiplied by this value before the particle is updated. |
---|
45 | Increasing this value helps particles to escape local optima, but slows convergence. The default |
---|
46 | value of 1.5 is geared toward multi-modal landscapes.)<br></td></tr> |
---|
47 | |
---|
48 | </table> |
---|
49 | |
---|
50 | <p><b>Parameter bases</b><br> |
---|
51 | <table> |
---|
52 | <tr><td valign=top><i>base</i>.<tt>data</tt></td> |
---|
53 | <td>Subpopulation</td></tr> |
---|
54 | </table> |
---|
55 | |
---|
56 | * @author Joey Harrison, Ankur Desai |
---|
57 | * @version 1.0 |
---|
58 | */ |
---|
59 | public class PSOSubpopulation extends Subpopulation |
---|
60 | { |
---|
61 | public int neighborhoodSize; |
---|
62 | public static final String P_NEIGHBORHOOD_SIZE = "neighborhood-size"; |
---|
63 | |
---|
64 | public boolean clampRange; |
---|
65 | public static final String P_CLAMP_RANGE = "clamp"; |
---|
66 | |
---|
67 | public double initialVelocityScale; |
---|
68 | public static final String P_INITIAL_VELOCITY_SCALE = "initial-velocity-scale"; |
---|
69 | |
---|
70 | public double velocityMultiplier; |
---|
71 | public static final String P_VELOCITY_MULTIPLIER = "velocity-multiplier"; |
---|
72 | |
---|
73 | public DoubleVectorIndividual globalBest; |
---|
74 | public DoubleVectorIndividual[] neighborhoodBests; |
---|
75 | public DoubleVectorIndividual[] personalBests; |
---|
76 | public DoubleVectorIndividual[] previousIndividuals; |
---|
77 | |
---|
78 | public static final String GLOBAL_BEST_PREAMBLE = "Global-Best Individual: "; |
---|
79 | public static final String NEIGHBORHOOD_BEST_PREAMBLE = "Neighborhood Best Individuals: "; |
---|
80 | public static final String PERSONAL_BEST_PREAMBLE = "Personal Best Individuals "; |
---|
81 | public static final String PREVIOUS_INDIVIDUAL_PREAMBLE = "Previous Individuals "; |
---|
82 | public static final String INDIVIDUAL_EXISTS_PREAMBLE = "Exists: "; |
---|
83 | |
---|
84 | public void setup(final EvolutionState state, final Parameter base) |
---|
85 | { |
---|
86 | super.setup(state, base); |
---|
87 | |
---|
88 | if (!(species instanceof FloatVectorSpecies)) |
---|
89 | state.output.error("PSOSubpopulation requires that its species is ec.vector.FloatVectorSpecies or a subclass. Yours is: " + species.getClass(), |
---|
90 | null,null); |
---|
91 | if (!(species.i_prototype instanceof DoubleVectorIndividual)) |
---|
92 | state.output.error("PSOSubpopulation requires that its species' prototypical individual be is ec.vector.DoubleVectorSpecies or a subclass. Yours is: " + species.getClass(), |
---|
93 | null,null); |
---|
94 | |
---|
95 | neighborhoodBests = new DoubleVectorIndividual[individuals.length]; |
---|
96 | personalBests = new DoubleVectorIndividual[individuals.length]; |
---|
97 | previousIndividuals = new DoubleVectorIndividual[individuals.length]; |
---|
98 | |
---|
99 | neighborhoodSize = state.parameters.getInt(base.push(P_NEIGHBORHOOD_SIZE), null); |
---|
100 | clampRange = state.parameters.getBoolean(base.push(P_CLAMP_RANGE), null, false); |
---|
101 | initialVelocityScale = state.parameters.getDouble(base.push(P_INITIAL_VELOCITY_SCALE), null,0); |
---|
102 | velocityMultiplier = state.parameters.getDouble(base.push(P_VELOCITY_MULTIPLIER), null,0.1); |
---|
103 | } |
---|
104 | |
---|
105 | void clear(DoubleVectorIndividual[] inds) |
---|
106 | { |
---|
107 | for(int x=0;x<inds.length;x++) { inds[x] = null; } |
---|
108 | } |
---|
109 | |
---|
110 | public void populate(EvolutionState state, int thread) |
---|
111 | { |
---|
112 | super.populate(state, thread); |
---|
113 | |
---|
114 | if (loadInds == null) // we're generating new individuals, not reading them from a file |
---|
115 | { |
---|
116 | clear(neighborhoodBests); |
---|
117 | clear(personalBests); |
---|
118 | |
---|
119 | FloatVectorSpecies fvSpecies = (FloatVectorSpecies)species; |
---|
120 | /* double range = fvSpecies.maxGene - fvSpecies.minGene; */ |
---|
121 | |
---|
122 | for (int i = 0; i < individuals.length; i++) |
---|
123 | { |
---|
124 | DoubleVectorIndividual prevInd = (DoubleVectorIndividual)individuals[i].clone(); |
---|
125 | |
---|
126 | // pick a genome near prevInd but not outside the box |
---|
127 | for(int j = 0; j < prevInd.genomeLength(); j++) |
---|
128 | { |
---|
129 | double val = prevInd.genome[j]; |
---|
130 | double range = fvSpecies.maxGene(j) - fvSpecies.minGene(j); |
---|
131 | do |
---|
132 | prevInd.genome[j] = val + (range * initialVelocityScale) * (state.random[thread].nextDouble()*2.0 - 1.0); |
---|
133 | while (prevInd.genome[j] < fvSpecies.minGene(j) || prevInd.genome[j] > fvSpecies.maxGene(j)); |
---|
134 | } |
---|
135 | previousIndividuals[i] = prevInd; |
---|
136 | } |
---|
137 | } |
---|
138 | } |
---|
139 | |
---|
140 | /** Overridden to include the global best, neighborhood bests, personal bests, and previous individuals in the stream. |
---|
141 | The neighborhood size, clamp range, and initial velocity scale are not included -- it's assumed you're using the |
---|
142 | same values for them on reading, or understand that the values are revised. */ |
---|
143 | public void printSubpopulationForHumans(final EvolutionState state, |
---|
144 | final int log) |
---|
145 | { |
---|
146 | // global best |
---|
147 | state.output.println(GLOBAL_BEST_PREAMBLE, log); |
---|
148 | if (globalBest == null) |
---|
149 | state.output.println(INDIVIDUAL_EXISTS_PREAMBLE + "false", log); |
---|
150 | else |
---|
151 | { |
---|
152 | state.output.println(INDIVIDUAL_EXISTS_PREAMBLE + "true", log); |
---|
153 | globalBest.printIndividualForHumans(state, log); |
---|
154 | } |
---|
155 | |
---|
156 | // neighborhoodBests |
---|
157 | state.output.println(NEIGHBORHOOD_BEST_PREAMBLE, log); |
---|
158 | for(int i = 0; i < individuals.length; i++) |
---|
159 | if (neighborhoodBests[i] == null) |
---|
160 | state.output.println(INDIVIDUAL_EXISTS_PREAMBLE + "false", log); |
---|
161 | else |
---|
162 | { |
---|
163 | state.output.println(INDIVIDUAL_EXISTS_PREAMBLE + "true", log); |
---|
164 | neighborhoodBests[i].printIndividualForHumans(state, log); |
---|
165 | } |
---|
166 | |
---|
167 | // personalBests |
---|
168 | state.output.println(PERSONAL_BEST_PREAMBLE, log); |
---|
169 | for(int i = 0; i < individuals.length; i++) |
---|
170 | if (personalBests[i] == null) |
---|
171 | state.output.println(INDIVIDUAL_EXISTS_PREAMBLE + "false", log); |
---|
172 | else |
---|
173 | { |
---|
174 | state.output.println(INDIVIDUAL_EXISTS_PREAMBLE + "true", log); |
---|
175 | personalBests[i].printIndividualForHumans(state, log); |
---|
176 | } |
---|
177 | |
---|
178 | // neighborhoodBests |
---|
179 | state.output.println(PREVIOUS_INDIVIDUAL_PREAMBLE, log); |
---|
180 | for(int i = 0; i < individuals.length; i++) |
---|
181 | if (previousIndividuals[i] == null) |
---|
182 | state.output.println(INDIVIDUAL_EXISTS_PREAMBLE + "false", log); |
---|
183 | else |
---|
184 | { |
---|
185 | state.output.println(INDIVIDUAL_EXISTS_PREAMBLE + "true", log); |
---|
186 | previousIndividuals[i].printIndividualForHumans(state, log); |
---|
187 | } |
---|
188 | |
---|
189 | super.printSubpopulationForHumans(state, log); |
---|
190 | } |
---|
191 | |
---|
192 | /** Overridden to include the global best, neighborhood bests, personal bests, and previous individuals in the stream. |
---|
193 | The neighborhood size, clamp range, and initial velocity scale are not included -- it's assumed you're using the |
---|
194 | same values for them on reading, or understand that the values are revised. */ |
---|
195 | public void printSubpopulation(final EvolutionState state, |
---|
196 | final int log) |
---|
197 | { |
---|
198 | // global best |
---|
199 | state.output.println(GLOBAL_BEST_PREAMBLE, log); |
---|
200 | if (globalBest == null) |
---|
201 | state.output.println(INDIVIDUAL_EXISTS_PREAMBLE + Code.encode(false), log); |
---|
202 | else |
---|
203 | { |
---|
204 | state.output.println(INDIVIDUAL_EXISTS_PREAMBLE + Code.encode(true), log); |
---|
205 | globalBest.printIndividual(state, log); |
---|
206 | } |
---|
207 | |
---|
208 | // neighborhoodBests |
---|
209 | state.output.println(NEIGHBORHOOD_BEST_PREAMBLE, log); |
---|
210 | for(int i = 0; i < individuals.length; i++) |
---|
211 | if (neighborhoodBests[i] == null) |
---|
212 | state.output.println(INDIVIDUAL_EXISTS_PREAMBLE + Code.encode(false), log); |
---|
213 | else |
---|
214 | { |
---|
215 | state.output.println(INDIVIDUAL_EXISTS_PREAMBLE + Code.encode(true), log); |
---|
216 | neighborhoodBests[i].printIndividual(state, log); |
---|
217 | } |
---|
218 | |
---|
219 | // personalBests |
---|
220 | state.output.println(PERSONAL_BEST_PREAMBLE, log); |
---|
221 | for(int i = 0; i < individuals.length; i++) |
---|
222 | if (personalBests[i] == null) |
---|
223 | state.output.println(INDIVIDUAL_EXISTS_PREAMBLE + Code.encode(false), log); |
---|
224 | else |
---|
225 | { |
---|
226 | state.output.println(INDIVIDUAL_EXISTS_PREAMBLE + Code.encode(true), log); |
---|
227 | personalBests[i].printIndividual(state, log); |
---|
228 | } |
---|
229 | |
---|
230 | // neighborhoodBests |
---|
231 | state.output.println(PREVIOUS_INDIVIDUAL_PREAMBLE, log); |
---|
232 | for(int i = 0; i < individuals.length; i++) |
---|
233 | if (previousIndividuals[i] == null) |
---|
234 | state.output.println(INDIVIDUAL_EXISTS_PREAMBLE + Code.encode(false), log); |
---|
235 | else |
---|
236 | { |
---|
237 | state.output.println(INDIVIDUAL_EXISTS_PREAMBLE + Code.encode(true), log); |
---|
238 | previousIndividuals[i].printIndividual(state, log); |
---|
239 | } |
---|
240 | |
---|
241 | super.printSubpopulation(state, log); |
---|
242 | } |
---|
243 | |
---|
244 | /** Overridden to include the global best, neighborhood bests, personal bests, and previous individuals in the stream. |
---|
245 | The neighborhood size, clamp range, and initial velocity scale are not included -- it's assumed you're using the |
---|
246 | same values for them on reading, or understand that the values are revised. */ |
---|
247 | public void printSubpopulation(final EvolutionState state, |
---|
248 | final PrintWriter writer) |
---|
249 | { |
---|
250 | // global best |
---|
251 | writer.println(GLOBAL_BEST_PREAMBLE); |
---|
252 | if (globalBest == null) |
---|
253 | writer.println(INDIVIDUAL_EXISTS_PREAMBLE + Code.encode(false)); |
---|
254 | else |
---|
255 | { |
---|
256 | writer.println(INDIVIDUAL_EXISTS_PREAMBLE + Code.encode(true)); |
---|
257 | globalBest.printIndividual(state, writer); |
---|
258 | } |
---|
259 | |
---|
260 | // neighborhoodBests |
---|
261 | writer.println(NEIGHBORHOOD_BEST_PREAMBLE); |
---|
262 | for(int i = 0; i < individuals.length; i++) |
---|
263 | if (neighborhoodBests[i] == null) |
---|
264 | writer.println(INDIVIDUAL_EXISTS_PREAMBLE + Code.encode(false)); |
---|
265 | else |
---|
266 | { |
---|
267 | writer.println(INDIVIDUAL_EXISTS_PREAMBLE + Code.encode(true)); |
---|
268 | neighborhoodBests[i].printIndividual(state, writer); |
---|
269 | } |
---|
270 | |
---|
271 | // personalBests |
---|
272 | writer.println(PERSONAL_BEST_PREAMBLE); |
---|
273 | for(int i = 0; i < individuals.length; i++) |
---|
274 | if (personalBests[i] == null) |
---|
275 | writer.println(INDIVIDUAL_EXISTS_PREAMBLE + Code.encode(false)); |
---|
276 | else |
---|
277 | { |
---|
278 | writer.println(INDIVIDUAL_EXISTS_PREAMBLE + Code.encode(true)); |
---|
279 | personalBests[i].printIndividual(state, writer); |
---|
280 | } |
---|
281 | |
---|
282 | // neighborhoodBests |
---|
283 | writer.println(PREVIOUS_INDIVIDUAL_PREAMBLE); |
---|
284 | for(int i = 0; i < individuals.length; i++) |
---|
285 | if (previousIndividuals[i] == null) |
---|
286 | writer.println(INDIVIDUAL_EXISTS_PREAMBLE + Code.encode(false)); |
---|
287 | else |
---|
288 | { |
---|
289 | writer.println(INDIVIDUAL_EXISTS_PREAMBLE + Code.encode(true)); |
---|
290 | previousIndividuals[i].printIndividual(state, writer); |
---|
291 | } |
---|
292 | |
---|
293 | super.printSubpopulation(state, writer); |
---|
294 | } |
---|
295 | |
---|
296 | DoubleVectorIndividual possiblyReadIndividual(final EvolutionState state, final LineNumberReader reader) throws IOException |
---|
297 | { |
---|
298 | if (Code.readBooleanWithPreamble(INDIVIDUAL_EXISTS_PREAMBLE, state, reader)) |
---|
299 | return (DoubleVectorIndividual)species.newIndividual(state, reader); |
---|
300 | else return null; |
---|
301 | } |
---|
302 | |
---|
303 | /** Overridden to include the global best, neighborhood bests, personal bests, and previous individuals in the stream. |
---|
304 | The neighborhood size, clamp range, and initial velocity scale are not included -- it's assumed you're using the |
---|
305 | same values for them on reading, or understand that the values are revised. */ |
---|
306 | public void readSubpopulation(final EvolutionState state, |
---|
307 | final LineNumberReader reader) throws IOException |
---|
308 | { |
---|
309 | // global best |
---|
310 | Code.checkPreamble(GLOBAL_BEST_PREAMBLE, state, reader); |
---|
311 | globalBest = possiblyReadIndividual(state, reader); |
---|
312 | |
---|
313 | // neighborhoodBests |
---|
314 | Code.checkPreamble(NEIGHBORHOOD_BEST_PREAMBLE, state, reader); |
---|
315 | for(int i = 0; i < individuals.length; i++) |
---|
316 | neighborhoodBests[i] = possiblyReadIndividual(state, reader); |
---|
317 | |
---|
318 | // personalBests |
---|
319 | Code.checkPreamble(PERSONAL_BEST_PREAMBLE, state, reader); |
---|
320 | for(int i = 0; i < individuals.length; i++) |
---|
321 | personalBests[i] = possiblyReadIndividual(state, reader); |
---|
322 | |
---|
323 | // neighborhoodBests |
---|
324 | Code.checkPreamble(PREVIOUS_INDIVIDUAL_PREAMBLE, state, reader); |
---|
325 | for(int i = 0; i < individuals.length; i++) |
---|
326 | previousIndividuals[i] = possiblyReadIndividual(state, reader); |
---|
327 | |
---|
328 | super.readSubpopulation(state, reader); |
---|
329 | } |
---|
330 | |
---|
331 | /** Overridden to include the global best, neighborhood bests, personal bests, and previous individuals in the stream. |
---|
332 | The neighborhood size, clamp range, and initial velocity scale are not included -- it's assumed you're using the |
---|
333 | same values for them on reading, or understand that the values are revised. */ |
---|
334 | public void writeSubpopulation(final EvolutionState state, |
---|
335 | final DataOutput dataOutput) throws IOException |
---|
336 | { |
---|
337 | // global best |
---|
338 | if (globalBest == null) |
---|
339 | dataOutput.writeBoolean(false); |
---|
340 | else |
---|
341 | { |
---|
342 | dataOutput.writeBoolean(true); |
---|
343 | globalBest.writeIndividual(state, dataOutput); |
---|
344 | } |
---|
345 | |
---|
346 | // neighborhoodBests |
---|
347 | for(int i = 0; i < individuals.length; i++) |
---|
348 | if (neighborhoodBests[i] == null) |
---|
349 | dataOutput.writeBoolean(false); |
---|
350 | else |
---|
351 | { |
---|
352 | dataOutput.writeBoolean(true); |
---|
353 | neighborhoodBests[i].writeIndividual(state, dataOutput); |
---|
354 | } |
---|
355 | |
---|
356 | // personalBests |
---|
357 | for(int i = 0; i < individuals.length; i++) |
---|
358 | if (personalBests[i] == null) |
---|
359 | dataOutput.writeBoolean(false); |
---|
360 | else |
---|
361 | { |
---|
362 | dataOutput.writeBoolean(true); |
---|
363 | personalBests[i].writeIndividual(state, dataOutput); |
---|
364 | } |
---|
365 | |
---|
366 | // previous Individuals |
---|
367 | for(int i = 0; i < individuals.length; i++) |
---|
368 | if (previousIndividuals[i] == null) |
---|
369 | dataOutput.writeBoolean(false); |
---|
370 | else |
---|
371 | { |
---|
372 | dataOutput.writeBoolean(true); |
---|
373 | previousIndividuals[i].writeIndividual(state, dataOutput); |
---|
374 | } |
---|
375 | |
---|
376 | super.writeSubpopulation(state, dataOutput); |
---|
377 | } |
---|
378 | |
---|
379 | /** Overridden to include the global best, neighborhood bests, personal bests, and previous individuals in the stream. |
---|
380 | The neighborhood size, clamp range, and initial velocity scale are not included -- it's assumed you're using the |
---|
381 | same values for them on reading, or understand that the values are revised. */ |
---|
382 | public void readSubpopulation(final EvolutionState state, |
---|
383 | final DataInput dataInput) throws IOException |
---|
384 | { |
---|
385 | // global best |
---|
386 | globalBest = (dataInput.readBoolean() ? (DoubleVectorIndividual)species.newIndividual(state, dataInput) : null); |
---|
387 | |
---|
388 | // neighborhoodBests |
---|
389 | for(int i = 0; i < individuals.length; i++) |
---|
390 | neighborhoodBests[i] = (dataInput.readBoolean() ? (DoubleVectorIndividual)species.newIndividual(state, dataInput): null); |
---|
391 | |
---|
392 | // personalBests |
---|
393 | for(int i = 0; i < individuals.length; i++) |
---|
394 | personalBests[i] = (dataInput.readBoolean() ? (DoubleVectorIndividual)species.newIndividual(state, dataInput): null); |
---|
395 | |
---|
396 | // previous Individuals |
---|
397 | for(int i = 0; i < individuals.length; i++) |
---|
398 | previousIndividuals[i] = (dataInput.readBoolean() ? (DoubleVectorIndividual)species.newIndividual(state, dataInput): null); |
---|
399 | |
---|
400 | super.readSubpopulation(state, dataInput); |
---|
401 | } |
---|
402 | } |
---|