[6152] | 1 | /* |
---|
| 2 | Copyright 2006 by Ankur Desai, Sean Luke, and George Mason University |
---|
| 3 | Licensed under the Academic Free License version 3.0 |
---|
| 4 | See the file "LICENSE" for more information |
---|
| 5 | */ |
---|
| 6 | |
---|
| 7 | package ec.pso; |
---|
| 8 | |
---|
| 9 | import ec.*; |
---|
| 10 | import ec.util.*; |
---|
| 11 | import ec.vector.*; |
---|
| 12 | import java.io.*; |
---|
| 13 | |
---|
| 14 | /** |
---|
| 15 | * PSOSubpopulation.java |
---|
| 16 | * |
---|
| 17 | |
---|
| 18 | <p>Particle Swarm Optimization (PSO) is a population-oriented stochastic search |
---|
| 19 | technique similar to genetic algorithms, evolutionary strategies, and other evolutionary |
---|
| 20 | computation algorithms. The technique discovers solutions for N-dimensional |
---|
| 21 | parameterized problems: basically it discovers the point in N-dimensional space which |
---|
| 22 | maximizes some quality function. |
---|
| 23 | |
---|
| 24 | <p>PSOSubpopulation handles initialization and input/output of the swarm. |
---|
| 25 | |
---|
| 26 | <p><b>Parameters</b><br> |
---|
| 27 | <table> |
---|
| 28 | |
---|
| 29 | <tr><td valign=top><i>base</i>.<tt>neighborhood-size</tt><br> |
---|
| 30 | <font size=-1>integer</font></td> |
---|
| 31 | <td valign=top>(the number of individuals per neighborhood)<br></td></tr> |
---|
| 32 | |
---|
| 33 | <tr><td valign=top><i>base</i>.<tt>clamp</tt><br> |
---|
| 34 | <font size=-1>boolean</font></td> |
---|
| 35 | <td valign=top>(clamp the individual to stay within the bounds or not)<br></td></tr> |
---|
| 36 | |
---|
| 37 | <tr><td valign=top><i>base</i>.<tt>initial-velocity-scale</tt><br> |
---|
| 38 | <font size=-1>double</font></td> |
---|
| 39 | <td valign=top>(particles are initialized with a random velocity and this value provides bounds. |
---|
| 40 | A value of 1.0 means that the velocity will be within +/- the range of the genotype.)<br></td></tr> |
---|
| 41 | |
---|
| 42 | <tr><td valign=top><i>base</i>.<tt>velocity-multiplier</tt><br> |
---|
| 43 | <font size=-1>double</font></td> |
---|
| 44 | <td valign=top>(particle velocities are multiplied by this value before the particle is updated. |
---|
| 45 | Increasing this value helps particles to escape local optima, but slows convergence. The default |
---|
| 46 | value of 1.5 is geared toward multi-modal landscapes.)<br></td></tr> |
---|
| 47 | |
---|
| 48 | </table> |
---|
| 49 | |
---|
| 50 | <p><b>Parameter bases</b><br> |
---|
| 51 | <table> |
---|
| 52 | <tr><td valign=top><i>base</i>.<tt>data</tt></td> |
---|
| 53 | <td>Subpopulation</td></tr> |
---|
| 54 | </table> |
---|
| 55 | |
---|
| 56 | * @author Joey Harrison, Ankur Desai |
---|
| 57 | * @version 1.0 |
---|
| 58 | */ |
---|
| 59 | public class PSOSubpopulation extends Subpopulation |
---|
| 60 | { |
---|
| 61 | public int neighborhoodSize; |
---|
| 62 | public static final String P_NEIGHBORHOOD_SIZE = "neighborhood-size"; |
---|
| 63 | |
---|
| 64 | public boolean clampRange; |
---|
| 65 | public static final String P_CLAMP_RANGE = "clamp"; |
---|
| 66 | |
---|
| 67 | public double initialVelocityScale; |
---|
| 68 | public static final String P_INITIAL_VELOCITY_SCALE = "initial-velocity-scale"; |
---|
| 69 | |
---|
| 70 | public double velocityMultiplier; |
---|
| 71 | public static final String P_VELOCITY_MULTIPLIER = "velocity-multiplier"; |
---|
| 72 | |
---|
| 73 | public DoubleVectorIndividual globalBest; |
---|
| 74 | public DoubleVectorIndividual[] neighborhoodBests; |
---|
| 75 | public DoubleVectorIndividual[] personalBests; |
---|
| 76 | public DoubleVectorIndividual[] previousIndividuals; |
---|
| 77 | |
---|
| 78 | public static final String GLOBAL_BEST_PREAMBLE = "Global-Best Individual: "; |
---|
| 79 | public static final String NEIGHBORHOOD_BEST_PREAMBLE = "Neighborhood Best Individuals: "; |
---|
| 80 | public static final String PERSONAL_BEST_PREAMBLE = "Personal Best Individuals "; |
---|
| 81 | public static final String PREVIOUS_INDIVIDUAL_PREAMBLE = "Previous Individuals "; |
---|
| 82 | public static final String INDIVIDUAL_EXISTS_PREAMBLE = "Exists: "; |
---|
| 83 | |
---|
| 84 | public void setup(final EvolutionState state, final Parameter base) |
---|
| 85 | { |
---|
| 86 | super.setup(state, base); |
---|
| 87 | |
---|
| 88 | if (!(species instanceof FloatVectorSpecies)) |
---|
| 89 | state.output.error("PSOSubpopulation requires that its species is ec.vector.FloatVectorSpecies or a subclass. Yours is: " + species.getClass(), |
---|
| 90 | null,null); |
---|
| 91 | if (!(species.i_prototype instanceof DoubleVectorIndividual)) |
---|
| 92 | state.output.error("PSOSubpopulation requires that its species' prototypical individual be is ec.vector.DoubleVectorSpecies or a subclass. Yours is: " + species.getClass(), |
---|
| 93 | null,null); |
---|
| 94 | |
---|
| 95 | neighborhoodBests = new DoubleVectorIndividual[individuals.length]; |
---|
| 96 | personalBests = new DoubleVectorIndividual[individuals.length]; |
---|
| 97 | previousIndividuals = new DoubleVectorIndividual[individuals.length]; |
---|
| 98 | |
---|
| 99 | neighborhoodSize = state.parameters.getInt(base.push(P_NEIGHBORHOOD_SIZE), null); |
---|
| 100 | clampRange = state.parameters.getBoolean(base.push(P_CLAMP_RANGE), null, false); |
---|
| 101 | initialVelocityScale = state.parameters.getDouble(base.push(P_INITIAL_VELOCITY_SCALE), null,0); |
---|
| 102 | velocityMultiplier = state.parameters.getDouble(base.push(P_VELOCITY_MULTIPLIER), null,0.1); |
---|
| 103 | } |
---|
| 104 | |
---|
| 105 | void clear(DoubleVectorIndividual[] inds) |
---|
| 106 | { |
---|
| 107 | for(int x=0;x<inds.length;x++) { inds[x] = null; } |
---|
| 108 | } |
---|
| 109 | |
---|
| 110 | public void populate(EvolutionState state, int thread) |
---|
| 111 | { |
---|
| 112 | super.populate(state, thread); |
---|
| 113 | |
---|
| 114 | if (loadInds == null) // we're generating new individuals, not reading them from a file |
---|
| 115 | { |
---|
| 116 | clear(neighborhoodBests); |
---|
| 117 | clear(personalBests); |
---|
| 118 | |
---|
| 119 | FloatVectorSpecies fvSpecies = (FloatVectorSpecies)species; |
---|
| 120 | /* double range = fvSpecies.maxGene - fvSpecies.minGene; */ |
---|
| 121 | |
---|
| 122 | for (int i = 0; i < individuals.length; i++) |
---|
| 123 | { |
---|
| 124 | DoubleVectorIndividual prevInd = (DoubleVectorIndividual)individuals[i].clone(); |
---|
| 125 | |
---|
| 126 | // pick a genome near prevInd but not outside the box |
---|
| 127 | for(int j = 0; j < prevInd.genomeLength(); j++) |
---|
| 128 | { |
---|
| 129 | double val = prevInd.genome[j]; |
---|
| 130 | double range = fvSpecies.maxGene(j) - fvSpecies.minGene(j); |
---|
| 131 | do |
---|
| 132 | prevInd.genome[j] = val + (range * initialVelocityScale) * (state.random[thread].nextDouble()*2.0 - 1.0); |
---|
| 133 | while (prevInd.genome[j] < fvSpecies.minGene(j) || prevInd.genome[j] > fvSpecies.maxGene(j)); |
---|
| 134 | } |
---|
| 135 | previousIndividuals[i] = prevInd; |
---|
| 136 | } |
---|
| 137 | } |
---|
| 138 | } |
---|
| 139 | |
---|
| 140 | /** Overridden to include the global best, neighborhood bests, personal bests, and previous individuals in the stream. |
---|
| 141 | The neighborhood size, clamp range, and initial velocity scale are not included -- it's assumed you're using the |
---|
| 142 | same values for them on reading, or understand that the values are revised. */ |
---|
| 143 | public void printSubpopulationForHumans(final EvolutionState state, |
---|
| 144 | final int log) |
---|
| 145 | { |
---|
| 146 | // global best |
---|
| 147 | state.output.println(GLOBAL_BEST_PREAMBLE, log); |
---|
| 148 | if (globalBest == null) |
---|
| 149 | state.output.println(INDIVIDUAL_EXISTS_PREAMBLE + "false", log); |
---|
| 150 | else |
---|
| 151 | { |
---|
| 152 | state.output.println(INDIVIDUAL_EXISTS_PREAMBLE + "true", log); |
---|
| 153 | globalBest.printIndividualForHumans(state, log); |
---|
| 154 | } |
---|
| 155 | |
---|
| 156 | // neighborhoodBests |
---|
| 157 | state.output.println(NEIGHBORHOOD_BEST_PREAMBLE, log); |
---|
| 158 | for(int i = 0; i < individuals.length; i++) |
---|
| 159 | if (neighborhoodBests[i] == null) |
---|
| 160 | state.output.println(INDIVIDUAL_EXISTS_PREAMBLE + "false", log); |
---|
| 161 | else |
---|
| 162 | { |
---|
| 163 | state.output.println(INDIVIDUAL_EXISTS_PREAMBLE + "true", log); |
---|
| 164 | neighborhoodBests[i].printIndividualForHumans(state, log); |
---|
| 165 | } |
---|
| 166 | |
---|
| 167 | // personalBests |
---|
| 168 | state.output.println(PERSONAL_BEST_PREAMBLE, log); |
---|
| 169 | for(int i = 0; i < individuals.length; i++) |
---|
| 170 | if (personalBests[i] == null) |
---|
| 171 | state.output.println(INDIVIDUAL_EXISTS_PREAMBLE + "false", log); |
---|
| 172 | else |
---|
| 173 | { |
---|
| 174 | state.output.println(INDIVIDUAL_EXISTS_PREAMBLE + "true", log); |
---|
| 175 | personalBests[i].printIndividualForHumans(state, log); |
---|
| 176 | } |
---|
| 177 | |
---|
| 178 | // neighborhoodBests |
---|
| 179 | state.output.println(PREVIOUS_INDIVIDUAL_PREAMBLE, log); |
---|
| 180 | for(int i = 0; i < individuals.length; i++) |
---|
| 181 | if (previousIndividuals[i] == null) |
---|
| 182 | state.output.println(INDIVIDUAL_EXISTS_PREAMBLE + "false", log); |
---|
| 183 | else |
---|
| 184 | { |
---|
| 185 | state.output.println(INDIVIDUAL_EXISTS_PREAMBLE + "true", log); |
---|
| 186 | previousIndividuals[i].printIndividualForHumans(state, log); |
---|
| 187 | } |
---|
| 188 | |
---|
| 189 | super.printSubpopulationForHumans(state, log); |
---|
| 190 | } |
---|
| 191 | |
---|
| 192 | /** Overridden to include the global best, neighborhood bests, personal bests, and previous individuals in the stream. |
---|
| 193 | The neighborhood size, clamp range, and initial velocity scale are not included -- it's assumed you're using the |
---|
| 194 | same values for them on reading, or understand that the values are revised. */ |
---|
| 195 | public void printSubpopulation(final EvolutionState state, |
---|
| 196 | final int log) |
---|
| 197 | { |
---|
| 198 | // global best |
---|
| 199 | state.output.println(GLOBAL_BEST_PREAMBLE, log); |
---|
| 200 | if (globalBest == null) |
---|
| 201 | state.output.println(INDIVIDUAL_EXISTS_PREAMBLE + Code.encode(false), log); |
---|
| 202 | else |
---|
| 203 | { |
---|
| 204 | state.output.println(INDIVIDUAL_EXISTS_PREAMBLE + Code.encode(true), log); |
---|
| 205 | globalBest.printIndividual(state, log); |
---|
| 206 | } |
---|
| 207 | |
---|
| 208 | // neighborhoodBests |
---|
| 209 | state.output.println(NEIGHBORHOOD_BEST_PREAMBLE, log); |
---|
| 210 | for(int i = 0; i < individuals.length; i++) |
---|
| 211 | if (neighborhoodBests[i] == null) |
---|
| 212 | state.output.println(INDIVIDUAL_EXISTS_PREAMBLE + Code.encode(false), log); |
---|
| 213 | else |
---|
| 214 | { |
---|
| 215 | state.output.println(INDIVIDUAL_EXISTS_PREAMBLE + Code.encode(true), log); |
---|
| 216 | neighborhoodBests[i].printIndividual(state, log); |
---|
| 217 | } |
---|
| 218 | |
---|
| 219 | // personalBests |
---|
| 220 | state.output.println(PERSONAL_BEST_PREAMBLE, log); |
---|
| 221 | for(int i = 0; i < individuals.length; i++) |
---|
| 222 | if (personalBests[i] == null) |
---|
| 223 | state.output.println(INDIVIDUAL_EXISTS_PREAMBLE + Code.encode(false), log); |
---|
| 224 | else |
---|
| 225 | { |
---|
| 226 | state.output.println(INDIVIDUAL_EXISTS_PREAMBLE + Code.encode(true), log); |
---|
| 227 | personalBests[i].printIndividual(state, log); |
---|
| 228 | } |
---|
| 229 | |
---|
| 230 | // neighborhoodBests |
---|
| 231 | state.output.println(PREVIOUS_INDIVIDUAL_PREAMBLE, log); |
---|
| 232 | for(int i = 0; i < individuals.length; i++) |
---|
| 233 | if (previousIndividuals[i] == null) |
---|
| 234 | state.output.println(INDIVIDUAL_EXISTS_PREAMBLE + Code.encode(false), log); |
---|
| 235 | else |
---|
| 236 | { |
---|
| 237 | state.output.println(INDIVIDUAL_EXISTS_PREAMBLE + Code.encode(true), log); |
---|
| 238 | previousIndividuals[i].printIndividual(state, log); |
---|
| 239 | } |
---|
| 240 | |
---|
| 241 | super.printSubpopulation(state, log); |
---|
| 242 | } |
---|
| 243 | |
---|
| 244 | /** Overridden to include the global best, neighborhood bests, personal bests, and previous individuals in the stream. |
---|
| 245 | The neighborhood size, clamp range, and initial velocity scale are not included -- it's assumed you're using the |
---|
| 246 | same values for them on reading, or understand that the values are revised. */ |
---|
| 247 | public void printSubpopulation(final EvolutionState state, |
---|
| 248 | final PrintWriter writer) |
---|
| 249 | { |
---|
| 250 | // global best |
---|
| 251 | writer.println(GLOBAL_BEST_PREAMBLE); |
---|
| 252 | if (globalBest == null) |
---|
| 253 | writer.println(INDIVIDUAL_EXISTS_PREAMBLE + Code.encode(false)); |
---|
| 254 | else |
---|
| 255 | { |
---|
| 256 | writer.println(INDIVIDUAL_EXISTS_PREAMBLE + Code.encode(true)); |
---|
| 257 | globalBest.printIndividual(state, writer); |
---|
| 258 | } |
---|
| 259 | |
---|
| 260 | // neighborhoodBests |
---|
| 261 | writer.println(NEIGHBORHOOD_BEST_PREAMBLE); |
---|
| 262 | for(int i = 0; i < individuals.length; i++) |
---|
| 263 | if (neighborhoodBests[i] == null) |
---|
| 264 | writer.println(INDIVIDUAL_EXISTS_PREAMBLE + Code.encode(false)); |
---|
| 265 | else |
---|
| 266 | { |
---|
| 267 | writer.println(INDIVIDUAL_EXISTS_PREAMBLE + Code.encode(true)); |
---|
| 268 | neighborhoodBests[i].printIndividual(state, writer); |
---|
| 269 | } |
---|
| 270 | |
---|
| 271 | // personalBests |
---|
| 272 | writer.println(PERSONAL_BEST_PREAMBLE); |
---|
| 273 | for(int i = 0; i < individuals.length; i++) |
---|
| 274 | if (personalBests[i] == null) |
---|
| 275 | writer.println(INDIVIDUAL_EXISTS_PREAMBLE + Code.encode(false)); |
---|
| 276 | else |
---|
| 277 | { |
---|
| 278 | writer.println(INDIVIDUAL_EXISTS_PREAMBLE + Code.encode(true)); |
---|
| 279 | personalBests[i].printIndividual(state, writer); |
---|
| 280 | } |
---|
| 281 | |
---|
| 282 | // neighborhoodBests |
---|
| 283 | writer.println(PREVIOUS_INDIVIDUAL_PREAMBLE); |
---|
| 284 | for(int i = 0; i < individuals.length; i++) |
---|
| 285 | if (previousIndividuals[i] == null) |
---|
| 286 | writer.println(INDIVIDUAL_EXISTS_PREAMBLE + Code.encode(false)); |
---|
| 287 | else |
---|
| 288 | { |
---|
| 289 | writer.println(INDIVIDUAL_EXISTS_PREAMBLE + Code.encode(true)); |
---|
| 290 | previousIndividuals[i].printIndividual(state, writer); |
---|
| 291 | } |
---|
| 292 | |
---|
| 293 | super.printSubpopulation(state, writer); |
---|
| 294 | } |
---|
| 295 | |
---|
| 296 | DoubleVectorIndividual possiblyReadIndividual(final EvolutionState state, final LineNumberReader reader) throws IOException |
---|
| 297 | { |
---|
| 298 | if (Code.readBooleanWithPreamble(INDIVIDUAL_EXISTS_PREAMBLE, state, reader)) |
---|
| 299 | return (DoubleVectorIndividual)species.newIndividual(state, reader); |
---|
| 300 | else return null; |
---|
| 301 | } |
---|
| 302 | |
---|
| 303 | /** Overridden to include the global best, neighborhood bests, personal bests, and previous individuals in the stream. |
---|
| 304 | The neighborhood size, clamp range, and initial velocity scale are not included -- it's assumed you're using the |
---|
| 305 | same values for them on reading, or understand that the values are revised. */ |
---|
| 306 | public void readSubpopulation(final EvolutionState state, |
---|
| 307 | final LineNumberReader reader) throws IOException |
---|
| 308 | { |
---|
| 309 | // global best |
---|
| 310 | Code.checkPreamble(GLOBAL_BEST_PREAMBLE, state, reader); |
---|
| 311 | globalBest = possiblyReadIndividual(state, reader); |
---|
| 312 | |
---|
| 313 | // neighborhoodBests |
---|
| 314 | Code.checkPreamble(NEIGHBORHOOD_BEST_PREAMBLE, state, reader); |
---|
| 315 | for(int i = 0; i < individuals.length; i++) |
---|
| 316 | neighborhoodBests[i] = possiblyReadIndividual(state, reader); |
---|
| 317 | |
---|
| 318 | // personalBests |
---|
| 319 | Code.checkPreamble(PERSONAL_BEST_PREAMBLE, state, reader); |
---|
| 320 | for(int i = 0; i < individuals.length; i++) |
---|
| 321 | personalBests[i] = possiblyReadIndividual(state, reader); |
---|
| 322 | |
---|
| 323 | // neighborhoodBests |
---|
| 324 | Code.checkPreamble(PREVIOUS_INDIVIDUAL_PREAMBLE, state, reader); |
---|
| 325 | for(int i = 0; i < individuals.length; i++) |
---|
| 326 | previousIndividuals[i] = possiblyReadIndividual(state, reader); |
---|
| 327 | |
---|
| 328 | super.readSubpopulation(state, reader); |
---|
| 329 | } |
---|
| 330 | |
---|
| 331 | /** Overridden to include the global best, neighborhood bests, personal bests, and previous individuals in the stream. |
---|
| 332 | The neighborhood size, clamp range, and initial velocity scale are not included -- it's assumed you're using the |
---|
| 333 | same values for them on reading, or understand that the values are revised. */ |
---|
| 334 | public void writeSubpopulation(final EvolutionState state, |
---|
| 335 | final DataOutput dataOutput) throws IOException |
---|
| 336 | { |
---|
| 337 | // global best |
---|
| 338 | if (globalBest == null) |
---|
| 339 | dataOutput.writeBoolean(false); |
---|
| 340 | else |
---|
| 341 | { |
---|
| 342 | dataOutput.writeBoolean(true); |
---|
| 343 | globalBest.writeIndividual(state, dataOutput); |
---|
| 344 | } |
---|
| 345 | |
---|
| 346 | // neighborhoodBests |
---|
| 347 | for(int i = 0; i < individuals.length; i++) |
---|
| 348 | if (neighborhoodBests[i] == null) |
---|
| 349 | dataOutput.writeBoolean(false); |
---|
| 350 | else |
---|
| 351 | { |
---|
| 352 | dataOutput.writeBoolean(true); |
---|
| 353 | neighborhoodBests[i].writeIndividual(state, dataOutput); |
---|
| 354 | } |
---|
| 355 | |
---|
| 356 | // personalBests |
---|
| 357 | for(int i = 0; i < individuals.length; i++) |
---|
| 358 | if (personalBests[i] == null) |
---|
| 359 | dataOutput.writeBoolean(false); |
---|
| 360 | else |
---|
| 361 | { |
---|
| 362 | dataOutput.writeBoolean(true); |
---|
| 363 | personalBests[i].writeIndividual(state, dataOutput); |
---|
| 364 | } |
---|
| 365 | |
---|
| 366 | // previous Individuals |
---|
| 367 | for(int i = 0; i < individuals.length; i++) |
---|
| 368 | if (previousIndividuals[i] == null) |
---|
| 369 | dataOutput.writeBoolean(false); |
---|
| 370 | else |
---|
| 371 | { |
---|
| 372 | dataOutput.writeBoolean(true); |
---|
| 373 | previousIndividuals[i].writeIndividual(state, dataOutput); |
---|
| 374 | } |
---|
| 375 | |
---|
| 376 | super.writeSubpopulation(state, dataOutput); |
---|
| 377 | } |
---|
| 378 | |
---|
| 379 | /** Overridden to include the global best, neighborhood bests, personal bests, and previous individuals in the stream. |
---|
| 380 | The neighborhood size, clamp range, and initial velocity scale are not included -- it's assumed you're using the |
---|
| 381 | same values for them on reading, or understand that the values are revised. */ |
---|
| 382 | public void readSubpopulation(final EvolutionState state, |
---|
| 383 | final DataInput dataInput) throws IOException |
---|
| 384 | { |
---|
| 385 | // global best |
---|
| 386 | globalBest = (dataInput.readBoolean() ? (DoubleVectorIndividual)species.newIndividual(state, dataInput) : null); |
---|
| 387 | |
---|
| 388 | // neighborhoodBests |
---|
| 389 | for(int i = 0; i < individuals.length; i++) |
---|
| 390 | neighborhoodBests[i] = (dataInput.readBoolean() ? (DoubleVectorIndividual)species.newIndividual(state, dataInput): null); |
---|
| 391 | |
---|
| 392 | // personalBests |
---|
| 393 | for(int i = 0; i < individuals.length; i++) |
---|
| 394 | personalBests[i] = (dataInput.readBoolean() ? (DoubleVectorIndividual)species.newIndividual(state, dataInput): null); |
---|
| 395 | |
---|
| 396 | // previous Individuals |
---|
| 397 | for(int i = 0; i < individuals.length; i++) |
---|
| 398 | previousIndividuals[i] = (dataInput.readBoolean() ? (DoubleVectorIndividual)species.newIndividual(state, dataInput): null); |
---|
| 399 | |
---|
| 400 | super.readSubpopulation(state, dataInput); |
---|
| 401 | } |
---|
| 402 | } |
---|