1 | /* |
---|
2 | Copyright 2006 by Ankur Desai, Sean Luke, and George Mason University |
---|
3 | Licensed under the Academic Free License version 3.0 |
---|
4 | See the file "LICENSE" for more information |
---|
5 | */ |
---|
6 | |
---|
7 | package ec.pso; |
---|
8 | |
---|
9 | import ec.Breeder; |
---|
10 | import ec.EvolutionState; |
---|
11 | import ec.Population; |
---|
12 | import ec.util.Parameter; |
---|
13 | import ec.vector.DoubleVectorIndividual; |
---|
14 | /** |
---|
15 | * PSOBreeder.java |
---|
16 | * |
---|
17 | |
---|
18 | <p>The PSOBreeder performs the calculations to determine new particle locations |
---|
19 | and performs the bookkeeping to keep track of personal, neighborhood, and global |
---|
20 | best solutions. |
---|
21 | |
---|
22 | <p><b>Parameters</b><br> |
---|
23 | <table> |
---|
24 | <tr><td valign=top><i>base.</i><tt>debug-info</tt><br> |
---|
25 | <font size=-1>boolean</font></td> |
---|
26 | <td valign=top>(whether the system should display information useful for debugging purposes)<br> |
---|
27 | </td></tr> |
---|
28 | |
---|
29 | </table> |
---|
30 | |
---|
31 | * @author Joey Harrison, Ankur Desai |
---|
32 | * @version 1.0 |
---|
33 | */ |
---|
34 | public class PSOBreeder extends Breeder |
---|
35 | { |
---|
36 | public void setup(EvolutionState state, Parameter base) |
---|
37 | { |
---|
38 | // intentionally empty |
---|
39 | } |
---|
40 | |
---|
41 | public Population breedPopulation(EvolutionState state) |
---|
42 | { |
---|
43 | PSOSubpopulation subpop = (PSOSubpopulation) state.population.subpops[0]; |
---|
44 | |
---|
45 | // update bests |
---|
46 | assignPersonalBests(subpop); |
---|
47 | assignNeighborhoodBests(subpop); |
---|
48 | assignGlobalBest(subpop); |
---|
49 | |
---|
50 | // make a temporary copy of locations so we can modify the current location on the fly |
---|
51 | DoubleVectorIndividual[] tempClone = new DoubleVectorIndividual[subpop.individuals.length]; |
---|
52 | System.arraycopy(subpop.individuals, 0, tempClone, 0, subpop.individuals.length); |
---|
53 | |
---|
54 | // update particles |
---|
55 | for (int i = 0; i < subpop.individuals.length; i++) |
---|
56 | { |
---|
57 | DoubleVectorIndividual ind = (DoubleVectorIndividual)subpop.individuals[i]; |
---|
58 | DoubleVectorIndividual prevInd = (DoubleVectorIndividual)subpop.previousIndividuals[i]; |
---|
59 | // the individual's personal best |
---|
60 | DoubleVectorIndividual pBest = (DoubleVectorIndividual)subpop.personalBests[i]; |
---|
61 | // the individual's neighborhood best |
---|
62 | DoubleVectorIndividual nBest = (DoubleVectorIndividual)subpop.neighborhoodBests[i]; |
---|
63 | // the individuals's global best |
---|
64 | DoubleVectorIndividual gBest = (DoubleVectorIndividual)subpop.globalBest; |
---|
65 | |
---|
66 | // calculate update for each dimension in the genome |
---|
67 | for (int j = 0; j < ind.genomeLength(); j++) |
---|
68 | { |
---|
69 | double velocity = ind.genome[j] - prevInd.genome[j]; |
---|
70 | double pDelta = pBest.genome[j] - ind.genome[j]; // difference to personal best |
---|
71 | double nDelta = nBest.genome[j] - ind.genome[j]; // difference to neighborhood best |
---|
72 | double gDelta = gBest.genome[j] - ind.genome[j]; // difference to global best |
---|
73 | double pWeight = state.random[0].nextDouble(); // weight for personal best |
---|
74 | double nWeight = state.random[0].nextDouble(); // weight for neighborhood best |
---|
75 | double gWeight = state.random[0].nextDouble(); // weight for global best |
---|
76 | double newDelta = (velocity + pWeight*pDelta + nWeight*nDelta + gWeight*gDelta) / (1+pWeight+nWeight+gWeight); |
---|
77 | |
---|
78 | // update this individual's genome for this dimension |
---|
79 | ind.genome[j] += newDelta * subpop.velocityMultiplier; // it's obvious if you think about it |
---|
80 | } |
---|
81 | |
---|
82 | if (subpop.clampRange) |
---|
83 | ind.clamp(); |
---|
84 | } |
---|
85 | |
---|
86 | // update previous locations |
---|
87 | subpop.previousIndividuals = tempClone; |
---|
88 | |
---|
89 | return state.population; |
---|
90 | } |
---|
91 | |
---|
92 | public void assignPersonalBests(PSOSubpopulation subpop) |
---|
93 | { |
---|
94 | for (int i = 0; i < subpop.personalBests.length; i++) |
---|
95 | if ((subpop.personalBests[i] == null) || subpop.individuals[i].fitness.betterThan(subpop.personalBests[i].fitness)) |
---|
96 | subpop.personalBests[i] = (DoubleVectorIndividual)subpop.individuals[i].clone(); |
---|
97 | } |
---|
98 | |
---|
99 | public void assignNeighborhoodBests(PSOSubpopulation subpop) |
---|
100 | { |
---|
101 | for (int j = 0; j < subpop.individuals.length; j++) |
---|
102 | { |
---|
103 | DoubleVectorIndividual hoodBest = subpop.neighborhoodBests[j]; |
---|
104 | int start = (j - subpop.neighborhoodSize / 2); |
---|
105 | if (start < 0) |
---|
106 | start += subpop.individuals.length; |
---|
107 | |
---|
108 | for (int i = 0; i < subpop.neighborhoodSize; i++) |
---|
109 | { |
---|
110 | DoubleVectorIndividual ind = (DoubleVectorIndividual)subpop.individuals[(start + i) % subpop.individuals.length]; |
---|
111 | if((hoodBest == null) || ind.fitness.betterThan(hoodBest.fitness)) |
---|
112 | hoodBest = ind; |
---|
113 | } |
---|
114 | |
---|
115 | if (hoodBest != subpop.neighborhoodBests[j]) |
---|
116 | subpop.neighborhoodBests[j] = (DoubleVectorIndividual)hoodBest.clone(); |
---|
117 | } |
---|
118 | } |
---|
119 | |
---|
120 | public void assignGlobalBest(PSOSubpopulation subpop) |
---|
121 | { |
---|
122 | DoubleVectorIndividual globalBest = subpop.globalBest; |
---|
123 | for (int i = 0; i < subpop.individuals.length; i++) |
---|
124 | { |
---|
125 | DoubleVectorIndividual ind = (DoubleVectorIndividual)subpop.individuals[i]; |
---|
126 | if ((globalBest == null) || ind.fitness.betterThan(globalBest.fitness)) |
---|
127 | globalBest = ind; |
---|
128 | } |
---|
129 | if (globalBest != subpop.globalBest) |
---|
130 | subpop.globalBest = (DoubleVectorIndividual)globalBest.clone(); |
---|
131 | } |
---|
132 | } |
---|