[6152] | 1 | /* |
---|
| 2 | Copyright 2006 by Ankur Desai, Sean Luke, and George Mason University |
---|
| 3 | Licensed under the Academic Free License version 3.0 |
---|
| 4 | See the file "LICENSE" for more information |
---|
| 5 | */ |
---|
| 6 | |
---|
| 7 | package ec.pso; |
---|
| 8 | |
---|
| 9 | import ec.Breeder; |
---|
| 10 | import ec.EvolutionState; |
---|
| 11 | import ec.Population; |
---|
| 12 | import ec.util.Parameter; |
---|
| 13 | import ec.vector.DoubleVectorIndividual; |
---|
| 14 | /** |
---|
| 15 | * PSOBreeder.java |
---|
| 16 | * |
---|
| 17 | |
---|
| 18 | <p>The PSOBreeder performs the calculations to determine new particle locations |
---|
| 19 | and performs the bookkeeping to keep track of personal, neighborhood, and global |
---|
| 20 | best solutions. |
---|
| 21 | |
---|
| 22 | <p><b>Parameters</b><br> |
---|
| 23 | <table> |
---|
| 24 | <tr><td valign=top><i>base.</i><tt>debug-info</tt><br> |
---|
| 25 | <font size=-1>boolean</font></td> |
---|
| 26 | <td valign=top>(whether the system should display information useful for debugging purposes)<br> |
---|
| 27 | </td></tr> |
---|
| 28 | |
---|
| 29 | </table> |
---|
| 30 | |
---|
| 31 | * @author Joey Harrison, Ankur Desai |
---|
| 32 | * @version 1.0 |
---|
| 33 | */ |
---|
| 34 | public class PSOBreeder extends Breeder |
---|
| 35 | { |
---|
| 36 | public void setup(EvolutionState state, Parameter base) |
---|
| 37 | { |
---|
| 38 | // intentionally empty |
---|
| 39 | } |
---|
| 40 | |
---|
| 41 | public Population breedPopulation(EvolutionState state) |
---|
| 42 | { |
---|
| 43 | PSOSubpopulation subpop = (PSOSubpopulation) state.population.subpops[0]; |
---|
| 44 | |
---|
| 45 | // update bests |
---|
| 46 | assignPersonalBests(subpop); |
---|
| 47 | assignNeighborhoodBests(subpop); |
---|
| 48 | assignGlobalBest(subpop); |
---|
| 49 | |
---|
| 50 | // make a temporary copy of locations so we can modify the current location on the fly |
---|
| 51 | DoubleVectorIndividual[] tempClone = new DoubleVectorIndividual[subpop.individuals.length]; |
---|
| 52 | System.arraycopy(subpop.individuals, 0, tempClone, 0, subpop.individuals.length); |
---|
| 53 | |
---|
| 54 | // update particles |
---|
| 55 | for (int i = 0; i < subpop.individuals.length; i++) |
---|
| 56 | { |
---|
| 57 | DoubleVectorIndividual ind = (DoubleVectorIndividual)subpop.individuals[i]; |
---|
| 58 | DoubleVectorIndividual prevInd = (DoubleVectorIndividual)subpop.previousIndividuals[i]; |
---|
| 59 | // the individual's personal best |
---|
| 60 | DoubleVectorIndividual pBest = (DoubleVectorIndividual)subpop.personalBests[i]; |
---|
| 61 | // the individual's neighborhood best |
---|
| 62 | DoubleVectorIndividual nBest = (DoubleVectorIndividual)subpop.neighborhoodBests[i]; |
---|
| 63 | // the individuals's global best |
---|
| 64 | DoubleVectorIndividual gBest = (DoubleVectorIndividual)subpop.globalBest; |
---|
| 65 | |
---|
| 66 | // calculate update for each dimension in the genome |
---|
| 67 | for (int j = 0; j < ind.genomeLength(); j++) |
---|
| 68 | { |
---|
| 69 | double velocity = ind.genome[j] - prevInd.genome[j]; |
---|
| 70 | double pDelta = pBest.genome[j] - ind.genome[j]; // difference to personal best |
---|
| 71 | double nDelta = nBest.genome[j] - ind.genome[j]; // difference to neighborhood best |
---|
| 72 | double gDelta = gBest.genome[j] - ind.genome[j]; // difference to global best |
---|
| 73 | double pWeight = state.random[0].nextDouble(); // weight for personal best |
---|
| 74 | double nWeight = state.random[0].nextDouble(); // weight for neighborhood best |
---|
| 75 | double gWeight = state.random[0].nextDouble(); // weight for global best |
---|
| 76 | double newDelta = (velocity + pWeight*pDelta + nWeight*nDelta + gWeight*gDelta) / (1+pWeight+nWeight+gWeight); |
---|
| 77 | |
---|
| 78 | // update this individual's genome for this dimension |
---|
| 79 | ind.genome[j] += newDelta * subpop.velocityMultiplier; // it's obvious if you think about it |
---|
| 80 | } |
---|
| 81 | |
---|
| 82 | if (subpop.clampRange) |
---|
| 83 | ind.clamp(); |
---|
| 84 | } |
---|
| 85 | |
---|
| 86 | // update previous locations |
---|
| 87 | subpop.previousIndividuals = tempClone; |
---|
| 88 | |
---|
| 89 | return state.population; |
---|
| 90 | } |
---|
| 91 | |
---|
| 92 | public void assignPersonalBests(PSOSubpopulation subpop) |
---|
| 93 | { |
---|
| 94 | for (int i = 0; i < subpop.personalBests.length; i++) |
---|
| 95 | if ((subpop.personalBests[i] == null) || subpop.individuals[i].fitness.betterThan(subpop.personalBests[i].fitness)) |
---|
| 96 | subpop.personalBests[i] = (DoubleVectorIndividual)subpop.individuals[i].clone(); |
---|
| 97 | } |
---|
| 98 | |
---|
| 99 | public void assignNeighborhoodBests(PSOSubpopulation subpop) |
---|
| 100 | { |
---|
| 101 | for (int j = 0; j < subpop.individuals.length; j++) |
---|
| 102 | { |
---|
| 103 | DoubleVectorIndividual hoodBest = subpop.neighborhoodBests[j]; |
---|
| 104 | int start = (j - subpop.neighborhoodSize / 2); |
---|
| 105 | if (start < 0) |
---|
| 106 | start += subpop.individuals.length; |
---|
| 107 | |
---|
| 108 | for (int i = 0; i < subpop.neighborhoodSize; i++) |
---|
| 109 | { |
---|
| 110 | DoubleVectorIndividual ind = (DoubleVectorIndividual)subpop.individuals[(start + i) % subpop.individuals.length]; |
---|
| 111 | if((hoodBest == null) || ind.fitness.betterThan(hoodBest.fitness)) |
---|
| 112 | hoodBest = ind; |
---|
| 113 | } |
---|
| 114 | |
---|
| 115 | if (hoodBest != subpop.neighborhoodBests[j]) |
---|
| 116 | subpop.neighborhoodBests[j] = (DoubleVectorIndividual)hoodBest.clone(); |
---|
| 117 | } |
---|
| 118 | } |
---|
| 119 | |
---|
| 120 | public void assignGlobalBest(PSOSubpopulation subpop) |
---|
| 121 | { |
---|
| 122 | DoubleVectorIndividual globalBest = subpop.globalBest; |
---|
| 123 | for (int i = 0; i < subpop.individuals.length; i++) |
---|
| 124 | { |
---|
| 125 | DoubleVectorIndividual ind = (DoubleVectorIndividual)subpop.individuals[i]; |
---|
| 126 | if ((globalBest == null) || ind.fitness.betterThan(globalBest.fitness)) |
---|
| 127 | globalBest = ind; |
---|
| 128 | } |
---|
| 129 | if (globalBest != subpop.globalBest) |
---|
| 130 | subpop.globalBest = (DoubleVectorIndividual)globalBest.clone(); |
---|
| 131 | } |
---|
| 132 | } |
---|