1 | /* |
---|
2 | Copyright 2006 by Sean Luke |
---|
3 | Licensed under the Academic Free License version 3.0 |
---|
4 | See the file "LICENSE" for more information |
---|
5 | */ |
---|
6 | |
---|
7 | |
---|
8 | package ec.parsimony; |
---|
9 | |
---|
10 | import ec.*; |
---|
11 | import ec.util.*; |
---|
12 | |
---|
13 | /** |
---|
14 | This Statistics subclass implements Poli's "Tarpeian" method of parsimony control, whereby some |
---|
15 | <i>kill-proportion</i> of above-average-sized individuals in each subpopulation have their fitnesses |
---|
16 | set to a very bad value, and marks them as already evaluated (so the Evaluator can skip them). |
---|
17 | The specific individuals in this proportion is determined at random. |
---|
18 | |
---|
19 | <p>Different Fitnesses have different meanings of the word "bad". At present, we set the fitness |
---|
20 | to -Float.MAX_VALUE if it's a SimpleFitness, and set it to Float.MAX_VALUE if it's a KozaFitnesss. |
---|
21 | If it's any other kind of Fitness, an error is reported. You can override the "bad-setter" function |
---|
22 | setMinimumFitness(...) to make other kinds of fitness bad in different ways. In the future we may |
---|
23 | revisit how to set Fitnesses to "bad" in a more general way if this becomes an issue. |
---|
24 | |
---|
25 | <p>Tarpeian is implemented as a Statistics. Why? Because we need to mark individuals as evaluated |
---|
26 | prior to the Evaluator getting to them, and also need to keep track of the total proportion marked |
---|
27 | as such. We considered doing this as a SelectionMethod, as a BreedingPipeline, as a Breeder, and |
---|
28 | as an Evaluator. None are good options really -- Evaluator is the best approach but it means we |
---|
29 | have special Tarpeian Evaluators, so it's no longer orthogonal with other Evaluators. Eventually |
---|
30 | we settled on the one object which has the right hooks and can be easily stuck onto the system without |
---|
31 | modifying anything in a special-purpose way: a Statistics object. |
---|
32 | |
---|
33 | <p>All you need to do is add TarpeianStatistics as a child to your existing Statistics chain. If you |
---|
34 | have one existing Statistics, then you just add the parameters <tt>stat.num-children=1</tt> and |
---|
35 | <tt>stat.child.0=ec.parsimony.TarpeianStatistics</tt> You'll also need to specify the kill proportion |
---|
36 | (for example, <tt>stat.child.0.kill-proportion=0.2</tt> ) |
---|
37 | |
---|
38 | <p><b>Parameters</b><br> |
---|
39 | <table> |
---|
40 | <tr><td valign=top><i>base</i>.<tt>kill-proportion</tt><br> |
---|
41 | <font size=-1>0 < int < 1</font></td> |
---|
42 | <td valign=top>(proportion of above-average-sized individuals killed)</td></tr> |
---|
43 | </table> |
---|
44 | |
---|
45 | */ |
---|
46 | |
---|
47 | public class TarpeianStatistics extends Statistics |
---|
48 | { |
---|
49 | /** one in n individuals are killed */ |
---|
50 | public static final String P_KILL_PROPORTION = "kill-proportion"; |
---|
51 | float killProportion; |
---|
52 | |
---|
53 | public void setup( final EvolutionState state, final Parameter base ) |
---|
54 | { |
---|
55 | super.setup (state, base); |
---|
56 | |
---|
57 | killProportion = state.parameters.getFloat( base.push(P_KILL_PROPORTION), null, 0.0 ); |
---|
58 | if( killProportion < 0 || killProportion > 1 ) |
---|
59 | state.output.fatal( "Parameter not found, or it has an invalid value (<0 or >1).", base.push(P_KILL_PROPORTION) ); |
---|
60 | } |
---|
61 | |
---|
62 | /** |
---|
63 | Marks a proportion (killProportion) of individuals with above-average size (within their own subpopulation) to a minimum value. |
---|
64 | */ |
---|
65 | public void preEvaluationStatistics(final EvolutionState state) |
---|
66 | { |
---|
67 | for( int subpopulation = 0 ; subpopulation < state.population.subpops.length ; subpopulation++ ) |
---|
68 | { |
---|
69 | double averageSize = 0; |
---|
70 | |
---|
71 | for( int i = 0 ; i < state.population.subpops[subpopulation].individuals.length ; i++ ) |
---|
72 | averageSize += state.population.subpops[subpopulation].individuals[i].size(); |
---|
73 | |
---|
74 | averageSize /= state.population.subpops[subpopulation].individuals.length; |
---|
75 | |
---|
76 | for( int i = 0 ; i < state.population.subpops[subpopulation].individuals.length ; i++ ) |
---|
77 | { |
---|
78 | if( ( state.population.subpops[subpopulation].individuals[i].size() > averageSize ) && |
---|
79 | ( state.random[0].nextFloat() < killProportion ) ) |
---|
80 | { |
---|
81 | Individual ind = state.population.subpops[subpopulation].individuals[i]; |
---|
82 | setMinimumFitness( state, subpopulation, ind ); |
---|
83 | ind.evaluated = true; |
---|
84 | } |
---|
85 | } |
---|
86 | } |
---|
87 | } |
---|
88 | |
---|
89 | /** |
---|
90 | Sets the fitness of an individual to the minimum fitness possible. |
---|
91 | If the fitness is of type ec.simple.SimpleFitness, that minimum value is -Float.MAX_VALUE; |
---|
92 | If the fitness is of type ec.gp.koza.KozaFitness, that minimum value is Float.MAX_VALUE; |
---|
93 | Else, a fatal error is reported. |
---|
94 | |
---|
95 | You need to override this method if you're using any other type of fitness. |
---|
96 | */ |
---|
97 | public void setMinimumFitness( final EvolutionState state, int subpopulation, Individual ind ) |
---|
98 | { |
---|
99 | Fitness fitness = ind.fitness; |
---|
100 | if( fitness instanceof ec.gp.koza.KozaFitness ) |
---|
101 | ((ec.gp.koza.KozaFitness)fitness).setStandardizedFitness( state, Float.MAX_VALUE ); |
---|
102 | else if( fitness instanceof ec.simple.SimpleFitness ) |
---|
103 | ((ec.simple.SimpleFitness)fitness).setFitness(state,-Float.MAX_VALUE,false); |
---|
104 | else |
---|
105 | state.output.fatal( "TarpeianStatistics only accepts individuals with fitness of type ec.simple.SimpleFitness or ec.gp.koza.KozaFitness." ); |
---|
106 | } |
---|
107 | |
---|
108 | } |
---|