[6152] | 1 | /* |
---|
| 2 | Copyright 2006 by Sean Luke |
---|
| 3 | Licensed under the Academic Free License version 3.0 |
---|
| 4 | See the file "LICENSE" for more information |
---|
| 5 | */ |
---|
| 6 | |
---|
| 7 | |
---|
| 8 | package ec.parsimony; |
---|
| 9 | |
---|
| 10 | import ec.*; |
---|
| 11 | import ec.util.*; |
---|
| 12 | |
---|
| 13 | /** |
---|
| 14 | This Statistics subclass implements Poli's "Tarpeian" method of parsimony control, whereby some |
---|
| 15 | <i>kill-proportion</i> of above-average-sized individuals in each subpopulation have their fitnesses |
---|
| 16 | set to a very bad value, and marks them as already evaluated (so the Evaluator can skip them). |
---|
| 17 | The specific individuals in this proportion is determined at random. |
---|
| 18 | |
---|
| 19 | <p>Different Fitnesses have different meanings of the word "bad". At present, we set the fitness |
---|
| 20 | to -Float.MAX_VALUE if it's a SimpleFitness, and set it to Float.MAX_VALUE if it's a KozaFitnesss. |
---|
| 21 | If it's any other kind of Fitness, an error is reported. You can override the "bad-setter" function |
---|
| 22 | setMinimumFitness(...) to make other kinds of fitness bad in different ways. In the future we may |
---|
| 23 | revisit how to set Fitnesses to "bad" in a more general way if this becomes an issue. |
---|
| 24 | |
---|
| 25 | <p>Tarpeian is implemented as a Statistics. Why? Because we need to mark individuals as evaluated |
---|
| 26 | prior to the Evaluator getting to them, and also need to keep track of the total proportion marked |
---|
| 27 | as such. We considered doing this as a SelectionMethod, as a BreedingPipeline, as a Breeder, and |
---|
| 28 | as an Evaluator. None are good options really -- Evaluator is the best approach but it means we |
---|
| 29 | have special Tarpeian Evaluators, so it's no longer orthogonal with other Evaluators. Eventually |
---|
| 30 | we settled on the one object which has the right hooks and can be easily stuck onto the system without |
---|
| 31 | modifying anything in a special-purpose way: a Statistics object. |
---|
| 32 | |
---|
| 33 | <p>All you need to do is add TarpeianStatistics as a child to your existing Statistics chain. If you |
---|
| 34 | have one existing Statistics, then you just add the parameters <tt>stat.num-children=1</tt> and |
---|
| 35 | <tt>stat.child.0=ec.parsimony.TarpeianStatistics</tt> You'll also need to specify the kill proportion |
---|
| 36 | (for example, <tt>stat.child.0.kill-proportion=0.2</tt> ) |
---|
| 37 | |
---|
| 38 | <p><b>Parameters</b><br> |
---|
| 39 | <table> |
---|
| 40 | <tr><td valign=top><i>base</i>.<tt>kill-proportion</tt><br> |
---|
| 41 | <font size=-1>0 < int < 1</font></td> |
---|
| 42 | <td valign=top>(proportion of above-average-sized individuals killed)</td></tr> |
---|
| 43 | </table> |
---|
| 44 | |
---|
| 45 | */ |
---|
| 46 | |
---|
| 47 | public class TarpeianStatistics extends Statistics |
---|
| 48 | { |
---|
| 49 | /** one in n individuals are killed */ |
---|
| 50 | public static final String P_KILL_PROPORTION = "kill-proportion"; |
---|
| 51 | float killProportion; |
---|
| 52 | |
---|
| 53 | public void setup( final EvolutionState state, final Parameter base ) |
---|
| 54 | { |
---|
| 55 | super.setup (state, base); |
---|
| 56 | |
---|
| 57 | killProportion = state.parameters.getFloat( base.push(P_KILL_PROPORTION), null, 0.0 ); |
---|
| 58 | if( killProportion < 0 || killProportion > 1 ) |
---|
| 59 | state.output.fatal( "Parameter not found, or it has an invalid value (<0 or >1).", base.push(P_KILL_PROPORTION) ); |
---|
| 60 | } |
---|
| 61 | |
---|
| 62 | /** |
---|
| 63 | Marks a proportion (killProportion) of individuals with above-average size (within their own subpopulation) to a minimum value. |
---|
| 64 | */ |
---|
| 65 | public void preEvaluationStatistics(final EvolutionState state) |
---|
| 66 | { |
---|
| 67 | for( int subpopulation = 0 ; subpopulation < state.population.subpops.length ; subpopulation++ ) |
---|
| 68 | { |
---|
| 69 | double averageSize = 0; |
---|
| 70 | |
---|
| 71 | for( int i = 0 ; i < state.population.subpops[subpopulation].individuals.length ; i++ ) |
---|
| 72 | averageSize += state.population.subpops[subpopulation].individuals[i].size(); |
---|
| 73 | |
---|
| 74 | averageSize /= state.population.subpops[subpopulation].individuals.length; |
---|
| 75 | |
---|
| 76 | for( int i = 0 ; i < state.population.subpops[subpopulation].individuals.length ; i++ ) |
---|
| 77 | { |
---|
| 78 | if( ( state.population.subpops[subpopulation].individuals[i].size() > averageSize ) && |
---|
| 79 | ( state.random[0].nextFloat() < killProportion ) ) |
---|
| 80 | { |
---|
| 81 | Individual ind = state.population.subpops[subpopulation].individuals[i]; |
---|
| 82 | setMinimumFitness( state, subpopulation, ind ); |
---|
| 83 | ind.evaluated = true; |
---|
| 84 | } |
---|
| 85 | } |
---|
| 86 | } |
---|
| 87 | } |
---|
| 88 | |
---|
| 89 | /** |
---|
| 90 | Sets the fitness of an individual to the minimum fitness possible. |
---|
| 91 | If the fitness is of type ec.simple.SimpleFitness, that minimum value is -Float.MAX_VALUE; |
---|
| 92 | If the fitness is of type ec.gp.koza.KozaFitness, that minimum value is Float.MAX_VALUE; |
---|
| 93 | Else, a fatal error is reported. |
---|
| 94 | |
---|
| 95 | You need to override this method if you're using any other type of fitness. |
---|
| 96 | */ |
---|
| 97 | public void setMinimumFitness( final EvolutionState state, int subpopulation, Individual ind ) |
---|
| 98 | { |
---|
| 99 | Fitness fitness = ind.fitness; |
---|
| 100 | if( fitness instanceof ec.gp.koza.KozaFitness ) |
---|
| 101 | ((ec.gp.koza.KozaFitness)fitness).setStandardizedFitness( state, Float.MAX_VALUE ); |
---|
| 102 | else if( fitness instanceof ec.simple.SimpleFitness ) |
---|
| 103 | ((ec.simple.SimpleFitness)fitness).setFitness(state,-Float.MAX_VALUE,false); |
---|
| 104 | else |
---|
| 105 | state.output.fatal( "TarpeianStatistics only accepts individuals with fitness of type ec.simple.SimpleFitness or ec.gp.koza.KozaFitness." ); |
---|
| 106 | } |
---|
| 107 | |
---|
| 108 | } |
---|