[6152] | 1 | /* |
---|
| 2 | Copyright 2006 by Sean Luke and George Mason University |
---|
| 3 | Licensed under the Academic Free License version 3.0 |
---|
| 4 | See the file "LICENSE" for more information |
---|
| 5 | */ |
---|
| 6 | |
---|
| 7 | |
---|
| 8 | package ec.parsimony; |
---|
| 9 | |
---|
| 10 | import ec.*; |
---|
| 11 | import ec.util.*; |
---|
| 12 | import ec.steadystate.*; |
---|
| 13 | import ec.select.*; |
---|
| 14 | |
---|
| 15 | /* |
---|
| 16 | * RatioBucketTournamentSelection.java |
---|
| 17 | * |
---|
| 18 | * Created: Mon Apr 09 17:02:30 2001 |
---|
| 19 | * By: Liviu Panait |
---|
| 20 | */ |
---|
| 21 | |
---|
| 22 | /** |
---|
| 23 | * |
---|
| 24 | * Does a tournament selection, limited to the subpopulation it's |
---|
| 25 | * working in at the time. |
---|
| 26 | * |
---|
| 27 | * <p>Ratio Bucket Lexicographic Tournament selection works like as follows. The sizes of buckets are |
---|
| 28 | * proportioned so that low-fitness individuals are placed into much larger buckets than high-fitness |
---|
| 29 | * individuals. A bucket ratio <i>1/ratio</i> is specified beforehand. The bottom <i>1/ratio</i> individuals |
---|
| 30 | * of the population are placed into the bottom bucket. If any individuals remain in the population |
---|
| 31 | * with the same fitness as the best individual in the bottom bucket, they too are placed in that bucket. |
---|
| 32 | * Of the remaining population, the next <i>1/ratio</i> individuals are placed into the next bucket, plus any |
---|
| 33 | * individuals remaining in the population with the same fitness as the best individual now in that bucket, |
---|
| 34 | * and so on. This continues until every member of the population has been placed in a bucket. Once again, |
---|
| 35 | * the fitness of every individual in a bucket is set to the rank of the bucket relative to other buckets. |
---|
| 36 | * Ratio bucketing thus allows parsimony to have more of an effect on average when two similar low-fitness |
---|
| 37 | * individuals are considered than when two high-fitness individuals are considered. |
---|
| 38 | * |
---|
| 39 | * After ranking the individuals, <i>size</i> individuals are chosen at random from the |
---|
| 40 | * population. Of those individuals, the one with the highest rank is selected. If the two |
---|
| 41 | * individuals are in the same rank, meaning that they have similar fitness, the one |
---|
| 42 | * with the smallest size is selected. |
---|
| 43 | * |
---|
| 44 | * <p>Bucket Lexicographic Tournament selection is so simple that it doesn't |
---|
| 45 | * need to maintain a cache of any form, so many of the SelectionMethod methods |
---|
| 46 | * just don't do anything at all. |
---|
| 47 | * |
---|
| 48 | |
---|
| 49 | <p><b>Typical Number of Individuals Produced Per <tt>produce(...)</tt> call</b><br> |
---|
| 50 | Always 1. |
---|
| 51 | |
---|
| 52 | <p><b>Parameters</b><br> |
---|
| 53 | <table> |
---|
| 54 | <tr><td valign=top><i>base.</i><tt>size</tt><br> |
---|
| 55 | <font size=-1>int >= 1 (default 7)</font></td> |
---|
| 56 | <td valign=top>(the tournament size)</td></tr> |
---|
| 57 | |
---|
| 58 | <tr><td valign=top><i>base.</i><tt>pick-worst</tt><br> |
---|
| 59 | <font size=-1> bool = <tt>true</tt> or <tt>false</tt> (default)</font></td> |
---|
| 60 | <td valign=top>(should we pick the <i>worst</i> individual in the tournament instead of the <i>best</i>?)</td></tr> |
---|
| 61 | |
---|
| 62 | <tr><td valign=top><i>base.</i><tt>ratio</tt><br> |
---|
| 63 | <font size=-1>float >= 2 (default)</font></td> |
---|
| 64 | <td valign=top>(the ratio of worst out of remaining individuals that go in the next bucket)</td></tr> |
---|
| 65 | </table> |
---|
| 66 | |
---|
| 67 | <p><b>Default Base</b><br> |
---|
| 68 | select.ratio-bucket-tournament |
---|
| 69 | |
---|
| 70 | * |
---|
| 71 | * @author Liviu Panait |
---|
| 72 | * @version 1.0 |
---|
| 73 | */ |
---|
| 74 | |
---|
| 75 | public class RatioBucketTournamentSelection extends SelectionMethod implements SteadyStateBSourceForm |
---|
| 76 | { |
---|
| 77 | /** default base */ |
---|
| 78 | public static final String P_RATIO_BUCKET_TOURNAMENT = "ratio-bucket-tournament"; |
---|
| 79 | |
---|
| 80 | /** size parameter */ |
---|
| 81 | public static final String P_SIZE = "size"; |
---|
| 82 | |
---|
| 83 | /** Default size */ |
---|
| 84 | public static final int DEFAULT_SIZE = 7; |
---|
| 85 | |
---|
| 86 | /** Size of the tournament*/ |
---|
| 87 | public int size; |
---|
| 88 | |
---|
| 89 | /** if the worst individual should be picked in the tournament */ |
---|
| 90 | public static final String P_PICKWORST = "pick-worst"; |
---|
| 91 | |
---|
| 92 | /** Do we pick the worst instead of the best? */ |
---|
| 93 | public boolean pickWorst; |
---|
| 94 | |
---|
| 95 | /** The value of RATIO: each step, the worse 1/RATIO individuals are assigned the same fitness */ |
---|
| 96 | public static final String P_RATIO = "ratio"; |
---|
| 97 | |
---|
| 98 | /** The default value for RATIO */ |
---|
| 99 | static float defaultRATIO = 2; |
---|
| 100 | |
---|
| 101 | /** The value of RATIO */ |
---|
| 102 | public float ratio; |
---|
| 103 | |
---|
| 104 | // the indexes of the buckets where the individuals should go (will be used instead of fitness) |
---|
| 105 | int[] bucketValues; |
---|
| 106 | |
---|
| 107 | public Parameter defaultBase() |
---|
| 108 | { |
---|
| 109 | return SelectDefaults.base().push(P_RATIO_BUCKET_TOURNAMENT); |
---|
| 110 | } |
---|
| 111 | |
---|
| 112 | public void setup(final EvolutionState state, final Parameter base) |
---|
| 113 | { |
---|
| 114 | super.setup(state,base); |
---|
| 115 | |
---|
| 116 | Parameter def = defaultBase(); |
---|
| 117 | |
---|
| 118 | size = state.parameters.getInt(base.push(P_SIZE),def.push(P_SIZE),1); |
---|
| 119 | if (size < 1) |
---|
| 120 | state.output.fatal("Tournament size must be >= 1.",base.push(P_SIZE),def.push(P_SIZE)); |
---|
| 121 | |
---|
| 122 | if( state.parameters.exists( base.push(P_RATIO), def.push(P_RATIO))) |
---|
| 123 | { |
---|
| 124 | ratio = state.parameters.getFloat(base.push(P_RATIO),def.push(P_RATIO),2.0f); |
---|
| 125 | if( ratio<2 ) |
---|
| 126 | { |
---|
| 127 | state.output.fatal("The value of b must be >= 2.",base.push(P_RATIO),def.push(P_RATIO)); |
---|
| 128 | } |
---|
| 129 | } |
---|
| 130 | else |
---|
| 131 | { |
---|
| 132 | ratio = defaultRATIO; |
---|
| 133 | } |
---|
| 134 | |
---|
| 135 | pickWorst = state.parameters.getBoolean(base.push(P_PICKWORST),def.push(P_PICKWORST),false); |
---|
| 136 | } |
---|
| 137 | |
---|
| 138 | /** Prepare to produce: create the buckets!!!! */ |
---|
| 139 | public void prepareToProduce(final EvolutionState state, final int subpopulation, final int thread) |
---|
| 140 | { |
---|
| 141 | bucketValues = new int[ state.population.subpops[subpopulation].individuals.length ]; |
---|
| 142 | |
---|
| 143 | // correct? |
---|
| 144 | java.util.Arrays.sort(state.population.subpops[subpopulation].individuals, |
---|
| 145 | new java.util.Comparator() |
---|
| 146 | { |
---|
| 147 | public int compare(Object o1, Object o2) |
---|
| 148 | { |
---|
| 149 | Individual a = (Individual) o1; |
---|
| 150 | Individual b = (Individual) o2; |
---|
| 151 | if (a.fitness.betterThan(b.fitness)) |
---|
| 152 | return 1; |
---|
| 153 | if (b.fitness.betterThan(a.fitness)) |
---|
| 154 | return -1; |
---|
| 155 | return 0; |
---|
| 156 | } |
---|
| 157 | }); |
---|
| 158 | |
---|
| 159 | // how many individuals in current bucket |
---|
| 160 | int nInd; |
---|
| 161 | |
---|
| 162 | float totalInds = ((float)state.population.subpops[subpopulation].individuals.length); |
---|
| 163 | float averageBuck = Math.max( totalInds/ratio, 1 ); |
---|
| 164 | |
---|
| 165 | // first individual goes into first bucket |
---|
| 166 | bucketValues[0] = 0; |
---|
| 167 | |
---|
| 168 | // now there is one individual in the first bucket |
---|
| 169 | nInd = 1; |
---|
| 170 | totalInds--; |
---|
| 171 | |
---|
| 172 | for( int i = 1 ; i < state.population.subpops[subpopulation].individuals.length ; i++ ) |
---|
| 173 | { |
---|
| 174 | // if there is still some place left in the current bucket, throw the current individual there too |
---|
| 175 | if( nInd < averageBuck ) |
---|
| 176 | { |
---|
| 177 | bucketValues[i] = bucketValues[i-1]; |
---|
| 178 | nInd++; |
---|
| 179 | } |
---|
| 180 | else // check if it has the same fitness as last individual |
---|
| 181 | { |
---|
| 182 | if( ((Individual)state.population.subpops[subpopulation].individuals[i]).fitness.equivalentTo( |
---|
| 183 | ((Individual)state.population.subpops[subpopulation].individuals[i-1]).fitness ) ) |
---|
| 184 | { |
---|
| 185 | // now the individual has exactly the same fitness as previous one, |
---|
| 186 | // so we just put it in the same bucket as the previous one(s) |
---|
| 187 | bucketValues[i] = bucketValues[i-1]; |
---|
| 188 | nInd++; |
---|
| 189 | } |
---|
| 190 | else |
---|
| 191 | { |
---|
| 192 | // new bucket!!!! |
---|
| 193 | averageBuck = Math.max( totalInds/ratio, 1 ); |
---|
| 194 | bucketValues[i] = bucketValues[i-1] - 1; // decrease the fitness, so that high fit individuals have lower bucket values |
---|
| 195 | // with only one individual |
---|
| 196 | nInd = 1; |
---|
| 197 | } |
---|
| 198 | } |
---|
| 199 | totalInds--; |
---|
| 200 | } |
---|
| 201 | } |
---|
| 202 | |
---|
| 203 | public int produce(final int subpopulation, |
---|
| 204 | final EvolutionState state, |
---|
| 205 | final int thread) |
---|
| 206 | { |
---|
| 207 | // pick size random individuals, then pick the best. |
---|
| 208 | Individual[] oldinds = (state.population.subpops[subpopulation].individuals); |
---|
| 209 | int i = state.random[thread].nextInt(oldinds.length); |
---|
| 210 | long si = 0; |
---|
| 211 | |
---|
| 212 | for (int x=1;x<size;x++) |
---|
| 213 | { |
---|
| 214 | int j = state.random[thread].nextInt(oldinds.length); |
---|
| 215 | if (pickWorst) |
---|
| 216 | { |
---|
| 217 | if( bucketValues[j]>bucketValues[i] ) { i = j; si = 0; } |
---|
| 218 | else if( bucketValues[i]>bucketValues[j] ) { } // do nothing |
---|
| 219 | else |
---|
| 220 | { |
---|
| 221 | if (si==0) |
---|
| 222 | si = oldinds[i].size(); |
---|
| 223 | long sj = oldinds[j].size(); |
---|
| 224 | |
---|
| 225 | if (sj >= si) // sj's got worse lookin' trees |
---|
| 226 | { i = j; si = sj; } |
---|
| 227 | } |
---|
| 228 | } |
---|
| 229 | else |
---|
| 230 | { |
---|
| 231 | if( bucketValues[j]<bucketValues[i] ) { i = j; si = 0; } |
---|
| 232 | else if( bucketValues[i]<bucketValues[j] ) { } // do nothing |
---|
| 233 | else |
---|
| 234 | { |
---|
| 235 | if (si==0) |
---|
| 236 | si = oldinds[i].size(); |
---|
| 237 | long sj = oldinds[j].size(); |
---|
| 238 | |
---|
| 239 | if (sj < si) // sj's got better lookin' trees |
---|
| 240 | { i = j; si = sj; } |
---|
| 241 | } |
---|
| 242 | } |
---|
| 243 | } |
---|
| 244 | return i; |
---|
| 245 | } |
---|
| 246 | |
---|
| 247 | // included for SteadyState |
---|
| 248 | public void individualReplaced(final SteadyStateEvolutionState state, |
---|
| 249 | final int subpopulation, |
---|
| 250 | final int thread, |
---|
| 251 | final int individual) |
---|
| 252 | { return; } |
---|
| 253 | |
---|
| 254 | public void sourcesAreProperForm(final SteadyStateEvolutionState state) |
---|
| 255 | { return; } |
---|
| 256 | |
---|
| 257 | } |
---|