1 | /* |
---|
2 | Portions copyright 2010 by Sean Luke, Robert Hubley, and George Mason University |
---|
3 | Licensed under the Academic Free License version 3.0 |
---|
4 | See the file "LICENSE" for more information |
---|
5 | */ |
---|
6 | |
---|
7 | package ec.multiobjective.spea2; |
---|
8 | |
---|
9 | import ec.*; |
---|
10 | import ec.util.*; |
---|
11 | import ec.multiobjective.*; |
---|
12 | import ec.simple.*; |
---|
13 | |
---|
14 | /* |
---|
15 | * SPEA2Evaluator.java |
---|
16 | * |
---|
17 | * Created: Sat Oct 16 11:24:43 EDT 2010 |
---|
18 | * By: Faisal Abidi and Sean Luke |
---|
19 | * Replaces earlier class by: Robert Hubley, with revisions by Gabriel Balan and Keith Sullivan |
---|
20 | */ |
---|
21 | |
---|
22 | /** |
---|
23 | * This subclass of SimpleEvaluator evaluates the population, then computes auxiliary fitness |
---|
24 | * data of each subpopulation. |
---|
25 | */ |
---|
26 | |
---|
27 | public class SPEA2Evaluator extends SimpleEvaluator |
---|
28 | { |
---|
29 | public void evaluatePopulation(final EvolutionState state) |
---|
30 | { |
---|
31 | super.evaluatePopulation(state); |
---|
32 | |
---|
33 | // build SPEA2 fitness values |
---|
34 | for(int x = 0;x<state.population.subpops.length;x++) |
---|
35 | { |
---|
36 | Individual[] inds = state.population.subpops[x].individuals; |
---|
37 | computeAuxiliaryData(state, inds); |
---|
38 | } |
---|
39 | } |
---|
40 | |
---|
41 | /** Computes the strength of individuals, then the raw fitness (wimpiness) and kth-closest sparsity |
---|
42 | measure. Finally, computes the final fitness of the individuals. */ |
---|
43 | public void computeAuxiliaryData(EvolutionState state, Individual[] inds) |
---|
44 | { |
---|
45 | double[][] distances = calculateDistances(state, inds); |
---|
46 | |
---|
47 | // For each individual calculate the strength |
---|
48 | for(int y=0;y<inds.length;y++) |
---|
49 | { |
---|
50 | // Calculate the node strengths |
---|
51 | int myStrength = 0; |
---|
52 | for(int z=0;z<inds.length;z++) |
---|
53 | if (((SPEA2MultiObjectiveFitness)inds[y].fitness).paretoDominates((MultiObjectiveFitness)inds[z].fitness)) |
---|
54 | myStrength++; |
---|
55 | ((SPEA2MultiObjectiveFitness)inds[y].fitness).strength = myStrength; |
---|
56 | } //For each individual y calculate the strength |
---|
57 | |
---|
58 | // calculate k value |
---|
59 | int kTH = (int) Math.sqrt(inds.length); // note that the first element is k=1, not k=0 |
---|
60 | |
---|
61 | // For each individual calculate the Raw fitness and kth-distance |
---|
62 | for(int y=0;y<inds.length;y++) |
---|
63 | { |
---|
64 | double fitness = 0; |
---|
65 | for(int z=0;z<inds.length;z++) |
---|
66 | { |
---|
67 | // Raw fitness |
---|
68 | if ( ((SPEA2MultiObjectiveFitness)inds[z].fitness).paretoDominates((MultiObjectiveFitness)inds[y].fitness) ) |
---|
69 | { |
---|
70 | fitness += ((SPEA2MultiObjectiveFitness)inds[z].fitness).strength; |
---|
71 | } |
---|
72 | } // For each individual z calculate RAW fitness distances |
---|
73 | // Set SPEA2 raw fitness value for each individual |
---|
74 | |
---|
75 | SPEA2MultiObjectiveFitness indYFitness = ((SPEA2MultiObjectiveFitness)inds[y].fitness); |
---|
76 | |
---|
77 | // Density component |
---|
78 | |
---|
79 | // calc k-th nearest neighbor distance. |
---|
80 | // distances are squared, so we need to take the square root. |
---|
81 | double kthDistance = Math.sqrt(orderStatistics(distances[y], kTH, state.random[0])); |
---|
82 | |
---|
83 | // Set SPEA2 k-th NN distance value for each individual |
---|
84 | indYFitness.kthNNDistance = 1.0 / ( 2 + kthDistance); |
---|
85 | |
---|
86 | // Set SPEA2 fitness value for each individual |
---|
87 | indYFitness.fitness = fitness + indYFitness.kthNNDistance; |
---|
88 | } |
---|
89 | } |
---|
90 | |
---|
91 | |
---|
92 | /** Returns a matrix of sum squared distances from each individual to each other individual. */ |
---|
93 | public double[][] calculateDistances(EvolutionState state, Individual[] inds) |
---|
94 | { |
---|
95 | double[][] distances = new double[inds.length][inds.length]; |
---|
96 | for(int y=0;y<inds.length;y++) |
---|
97 | { |
---|
98 | distances[y][y] = 0; |
---|
99 | for(int z=y+1;z<inds.length;z++) |
---|
100 | { |
---|
101 | distances[z][y] = distances[y][z] = |
---|
102 | ((SPEA2MultiObjectiveFitness)inds[y].fitness). |
---|
103 | sumSquaredObjectiveDistance( (SPEA2MultiObjectiveFitness)inds[z].fitness ); |
---|
104 | } |
---|
105 | } |
---|
106 | return distances; |
---|
107 | } |
---|
108 | |
---|
109 | |
---|
110 | /** Returns the kth smallest element in the array. Note that here k=1 means the smallest element in the array (not k=0). |
---|
111 | Uses a randomized sorting technique, hence the need for the random number generator. */ |
---|
112 | double orderStatistics(double[] array, int kth, MersenneTwisterFast rng) |
---|
113 | { |
---|
114 | return randomizedSelect(array, 0, array.length-1, kth, rng); |
---|
115 | } |
---|
116 | |
---|
117 | |
---|
118 | /* OrderStatistics [Cormen, p187]: |
---|
119 | * find the ith smallest element of the array between indices p and r */ |
---|
120 | double randomizedSelect(double[] array, int p, int r, int i, MersenneTwisterFast rng) |
---|
121 | { |
---|
122 | if(p==r) return array[p]; |
---|
123 | int q = randomizedPartition(array, p, r, rng); |
---|
124 | int k = q-p+1; |
---|
125 | if(i<=k) |
---|
126 | return randomizedSelect(array, p, q, i,rng); |
---|
127 | else |
---|
128 | return randomizedSelect(array, q+1, r, i-k,rng); |
---|
129 | } |
---|
130 | |
---|
131 | |
---|
132 | /* [Cormen, p162] */ |
---|
133 | int randomizedPartition(double[] array, int p, int r, MersenneTwisterFast rng) |
---|
134 | { |
---|
135 | int i = rng.nextInt(r-p+1)+p; |
---|
136 | |
---|
137 | //exchange array[p]<->array[i] |
---|
138 | double tmp = array[i]; |
---|
139 | array[i]=array[p]; |
---|
140 | array[p]=tmp; |
---|
141 | return partition(array,p,r); |
---|
142 | } |
---|
143 | |
---|
144 | |
---|
145 | /* [cormen p 154] */ |
---|
146 | int partition(double[] array, int p, int r) |
---|
147 | { |
---|
148 | double x = array[p]; |
---|
149 | int i = p-1; |
---|
150 | int j = r+1; |
---|
151 | while(true) |
---|
152 | { |
---|
153 | do j--; while(array[j]>x); |
---|
154 | do i++; while(array[i]<x); |
---|
155 | if ( i < j ) |
---|
156 | { |
---|
157 | //exchange array[i]<->array[j] |
---|
158 | double tmp = array[i]; |
---|
159 | array[i]=array[j]; |
---|
160 | array[j]=tmp; |
---|
161 | } |
---|
162 | else |
---|
163 | return j; |
---|
164 | } |
---|
165 | } |
---|
166 | } |
---|