1 | /* |
---|
2 | Copyright 2010 by Sean Luke and George Mason University |
---|
3 | Licensed under the Academic Free License version 3.0 |
---|
4 | See the file "LICENSE" for more information |
---|
5 | */ |
---|
6 | |
---|
7 | package ec.multiobjective.nsga2; |
---|
8 | |
---|
9 | import java.util.*; |
---|
10 | import ec.*; |
---|
11 | import ec.multiobjective.*; |
---|
12 | import ec.simple.*; |
---|
13 | import ec.util.*; |
---|
14 | |
---|
15 | /* |
---|
16 | * NSGA2Evaluator.java |
---|
17 | * |
---|
18 | * Created: Sat Oct 16 00:19:57 EDT 2010 |
---|
19 | * By: Faisal Abidi and Sean Luke |
---|
20 | */ |
---|
21 | |
---|
22 | |
---|
23 | /** |
---|
24 | * The NSGA2Evaluator is a simple generational evaluator which |
---|
25 | * evaluates every single member of the population (in a multithreaded fashion). |
---|
26 | * Then it reduces the population size to an <i>archive</i> consisting of the |
---|
27 | * best front ranks. When there isn't enough space to fit another front rank, |
---|
28 | * individuals in that final front rank vie for the remaining slots in the archive |
---|
29 | * based on their sparsity. |
---|
30 | * |
---|
31 | * <p>The evaluator is also responsible for calculating the rank and |
---|
32 | * sparsity values stored in the NSGA2MultiObjectiveFitness class and used largely |
---|
33 | * for statistical information. |
---|
34 | * |
---|
35 | * <p>NSGA-II has fixed archive size (the population size), and so ignores the 'elites' |
---|
36 | * declaration. However it will adhere to the 'reevaluate-elites' parameter in SimpleBreeder |
---|
37 | * to determine whether to force fitness reevaluation. |
---|
38 | * |
---|
39 | */ |
---|
40 | |
---|
41 | public class NSGA2Evaluator extends SimpleEvaluator |
---|
42 | { |
---|
43 | /** The original population size is stored here so NSGA2 knows how large to create the archive |
---|
44 | (it's the size of the original population -- keep in mind that NSGA2Breeder had made the |
---|
45 | population larger to include the children. */ |
---|
46 | public int originalPopSize[]; |
---|
47 | |
---|
48 | public void setup(final EvolutionState state, final Parameter base) |
---|
49 | { |
---|
50 | super.setup(state, base); |
---|
51 | Parameter p = new Parameter(Initializer.P_POP); |
---|
52 | int subpopsLength = state.parameters.getInt(p.push(Population.P_SIZE), null, 1); |
---|
53 | Parameter p_subpop; |
---|
54 | originalPopSize = new int[subpopsLength]; |
---|
55 | for (int i = 0; i < subpopsLength; i++) |
---|
56 | { |
---|
57 | p_subpop = p.push(Population.P_SUBPOP).push("" + i).push(Subpopulation.P_SUBPOPSIZE); |
---|
58 | originalPopSize[i] = state.parameters.getInt(p_subpop, null, 1); |
---|
59 | } |
---|
60 | } |
---|
61 | |
---|
62 | |
---|
63 | /** |
---|
64 | * Evaluates the population, then builds the archive and reduces the population to just the archive. |
---|
65 | */ |
---|
66 | public void evaluatePopulation(final EvolutionState state) |
---|
67 | { |
---|
68 | super.evaluatePopulation(state); |
---|
69 | for (int x = 0; x < state.population.subpops.length; x++) |
---|
70 | state.population.subpops[x].individuals = |
---|
71 | buildArchive(state, x); |
---|
72 | } |
---|
73 | |
---|
74 | |
---|
75 | /** Build the auxiliary fitness data and reduce the subpopulation to just the archive, which is |
---|
76 | returned. */ |
---|
77 | public Individual[] buildArchive(EvolutionState state, int subpop) |
---|
78 | { |
---|
79 | Individual[] dummy = new Individual[0]; |
---|
80 | ArrayList ranks = assignFrontRanks(state.population.subpops[subpop]); |
---|
81 | |
---|
82 | ArrayList newSubpopulation = new ArrayList(); |
---|
83 | int size = ranks.size(); |
---|
84 | for(int i = 0; i < size; i++) |
---|
85 | { |
---|
86 | Individual[] rank = (Individual[])((ArrayList)(ranks.get(i))).toArray(dummy); |
---|
87 | assignSparsity(rank); |
---|
88 | if (rank.length + newSubpopulation.size() >= originalPopSize[subpop]) |
---|
89 | { |
---|
90 | // first sort the rank by sparsity |
---|
91 | ec.util.QuickSort.qsort(rank, new SortComparator() |
---|
92 | { |
---|
93 | public boolean lt(Object a, Object b) |
---|
94 | { |
---|
95 | Individual i1 = (Individual) a; |
---|
96 | Individual i2 = (Individual) b; |
---|
97 | return (((NSGA2MultiObjectiveFitness) i1.fitness).sparsity > ((NSGA2MultiObjectiveFitness) i2.fitness).sparsity); |
---|
98 | } |
---|
99 | |
---|
100 | public boolean gt(Object a, Object b) |
---|
101 | { |
---|
102 | Individual i1 = (Individual) a; |
---|
103 | Individual i2 = (Individual) b; |
---|
104 | return (((NSGA2MultiObjectiveFitness) i1.fitness).sparsity < ((NSGA2MultiObjectiveFitness) i2.fitness).sparsity); |
---|
105 | } |
---|
106 | }); |
---|
107 | |
---|
108 | // then put the m sparsest individuals in the new population |
---|
109 | int m = originalPopSize[subpop] - newSubpopulation.size(); |
---|
110 | for(int j = 0 ; j < m; j++) |
---|
111 | newSubpopulation.add(rank[j]); |
---|
112 | |
---|
113 | // and bail |
---|
114 | break; |
---|
115 | } |
---|
116 | else |
---|
117 | { |
---|
118 | // dump in everyone |
---|
119 | for(int j = 0 ; j < rank.length; j++) |
---|
120 | newSubpopulation.add(rank[j]); |
---|
121 | } |
---|
122 | } |
---|
123 | |
---|
124 | Individual[] archive = (Individual[])(newSubpopulation.toArray(dummy)); |
---|
125 | |
---|
126 | // maybe force reevaluation |
---|
127 | NSGA2Breeder breeder = (NSGA2Breeder)(state.breeder); |
---|
128 | if (breeder.reevaluateElites[subpop]) |
---|
129 | for(int i = 0 ; i < archive.length; i++) |
---|
130 | archive[i].evaluated = false; |
---|
131 | |
---|
132 | return archive; |
---|
133 | } |
---|
134 | |
---|
135 | |
---|
136 | |
---|
137 | /** Divides inds into ranks and assigns each individual's rank to be the rank it was placed into. |
---|
138 | Each front is an ArrayList. */ |
---|
139 | public ArrayList assignFrontRanks(Subpopulation subpop) |
---|
140 | { |
---|
141 | Individual[] inds = subpop.individuals; |
---|
142 | ArrayList frontsByRank = MultiObjectiveFitness.partitionIntoRanks(inds); |
---|
143 | |
---|
144 | int numRanks = frontsByRank.size(); |
---|
145 | for(int rank = 0; rank < numRanks; rank++) |
---|
146 | { |
---|
147 | ArrayList front = (ArrayList)(frontsByRank.get(rank)); |
---|
148 | int numInds = front.size(); |
---|
149 | for(int ind = 0; ind < numInds; ind++) |
---|
150 | ((NSGA2MultiObjectiveFitness)(((Individual)(front.get(ind))).fitness)).rank = rank; |
---|
151 | } |
---|
152 | return frontsByRank; |
---|
153 | } |
---|
154 | |
---|
155 | |
---|
156 | |
---|
157 | /** |
---|
158 | * Computes and assigns the sparsity values of a given front. |
---|
159 | */ |
---|
160 | public void assignSparsity(Individual[] front) |
---|
161 | { |
---|
162 | int numObjectives = ((NSGA2MultiObjectiveFitness) front[0].fitness).getObjectives().length; |
---|
163 | |
---|
164 | for (int i = 0; i < front.length; i++) |
---|
165 | ((NSGA2MultiObjectiveFitness) front[i].fitness).sparsity = 0; |
---|
166 | |
---|
167 | for (int i = 0; i < numObjectives; i++) |
---|
168 | { |
---|
169 | final int o = i; |
---|
170 | // 1. Sort front by each objective. |
---|
171 | // 2. Sum the manhattan distance of an individual's neighbours over |
---|
172 | // each objective. |
---|
173 | // NOTE: No matter which objectives objective you sort by, the |
---|
174 | // first and last individuals will always be the same (they maybe |
---|
175 | // interchanged though). This is because a Pareto front's |
---|
176 | // objective values are strictly increasing/decreasing. |
---|
177 | ec.util.QuickSort.qsort(front, new SortComparator() |
---|
178 | { |
---|
179 | public boolean lt(Object a, Object b) |
---|
180 | { |
---|
181 | Individual i1 = (Individual) a; |
---|
182 | Individual i2 = (Individual) b; |
---|
183 | return (((NSGA2MultiObjectiveFitness) i1.fitness).getObjective(o) < ((NSGA2MultiObjectiveFitness) i2.fitness).getObjective(o)); |
---|
184 | } |
---|
185 | |
---|
186 | public boolean gt(Object a, Object b) |
---|
187 | { |
---|
188 | Individual i1 = (Individual) a; |
---|
189 | Individual i2 = (Individual) b; |
---|
190 | return (((NSGA2MultiObjectiveFitness) i1.fitness).getObjective(o) > ((NSGA2MultiObjectiveFitness) i2.fitness).getObjective(o)); |
---|
191 | } |
---|
192 | }); |
---|
193 | |
---|
194 | // Compute and assign sparsity. |
---|
195 | // the first and last individuals are the sparsest. |
---|
196 | ((NSGA2MultiObjectiveFitness) front[0].fitness).sparsity = Double.POSITIVE_INFINITY; |
---|
197 | ((NSGA2MultiObjectiveFitness) front[front.length - 1].fitness).sparsity = Double.POSITIVE_INFINITY; |
---|
198 | for (int j = 1; j < front.length - 1; j++) |
---|
199 | { |
---|
200 | NSGA2MultiObjectiveFitness f_j = (NSGA2MultiObjectiveFitness) (front[j].fitness); |
---|
201 | NSGA2MultiObjectiveFitness f_jplus1 = (NSGA2MultiObjectiveFitness) (front[j+1].fitness); |
---|
202 | NSGA2MultiObjectiveFitness f_jminus1 = (NSGA2MultiObjectiveFitness) (front[j-1].fitness); |
---|
203 | |
---|
204 | // store the NSGA2Sparsity in sparsity |
---|
205 | f_j.sparsity += (f_jplus1.getObjective(o) - f_jminus1.getObjective(o)) / (f_j.maxObjective[o] - f_j.minObjective[o]); |
---|
206 | } |
---|
207 | } |
---|
208 | } |
---|
209 | } |
---|