1 | /* |
---|
2 | Copyright 2006 by Sean Luke |
---|
3 | Licensed under the Academic Free License version 3.0 |
---|
4 | See the file "LICENSE" for more information |
---|
5 | */ |
---|
6 | |
---|
7 | |
---|
8 | package ec.gp.koza; |
---|
9 | import ec.steadystate.*; |
---|
10 | import ec.*; |
---|
11 | import ec.simple.*; |
---|
12 | import ec.gp.*; |
---|
13 | import ec.util.*; |
---|
14 | import java.io.*; |
---|
15 | |
---|
16 | /* |
---|
17 | * KozaStatistics.java |
---|
18 | * |
---|
19 | * Created: Fri Nov 5 16:03:44 1999 |
---|
20 | * By: Sean Luke |
---|
21 | */ |
---|
22 | |
---|
23 | /** |
---|
24 | * A simple Koza-style statistics generator. Prints the mean fitness |
---|
25 | * (raw,adjusted,hits) and best individual of each generation. |
---|
26 | * At the end, prints the best individual of the run and the number of |
---|
27 | * individuals processed. |
---|
28 | * |
---|
29 | * <p>If gather-full is true, then final timing information, number of nodes |
---|
30 | * and depths of trees, approximate final memory utilization, etc. are also given. |
---|
31 | * |
---|
32 | * <p>Compressed files will be overridden on restart from checkpoint; uncompressed files will be |
---|
33 | * appended on restart. |
---|
34 | * |
---|
35 | * <p>KozaStatistics implements a simple version of steady-state statistics in the |
---|
36 | * same fashion that SimpleStatistics does: if it quits before a generation boundary, |
---|
37 | * it will include the best individual discovered, even if the individual was discovered |
---|
38 | * after the last boundary. This is done by using individualsEvaluatedStatistics(...) |
---|
39 | * to update best-individual-of-generation in addition to doing it in |
---|
40 | * postEvaluationStatistics(...). |
---|
41 | |
---|
42 | <p><b>Parameters</b><br> |
---|
43 | <table> |
---|
44 | <tr><td valign=top><i>base.</i><tt>gzip</tt><br> |
---|
45 | <font size=-1>boolean</font></td> |
---|
46 | <td valign=top>(whether or not to compress the file (.gz suffix added)</td></tr> |
---|
47 | <tr><td valign=top><i>base.</i><tt>file</tt><br> |
---|
48 | <font size=-1>String (a filename), or nonexistant (signifies stdout)</font></td> |
---|
49 | <td valign=top>(the log for statistics)</td></tr> |
---|
50 | <tr><td valign=top><i>base</i>.<tt>gather-full</tt><br> |
---|
51 | <font size=-1>bool = <tt>true</tt> or <tt>false</tt> (default)</font></td> |
---|
52 | <td valign=top>(should we full statistics on individuals (will run slower, though the slowness is due to off-line processing that won't mess up timings)</td></tr> |
---|
53 | </table> |
---|
54 | * @author Sean Luke |
---|
55 | * @deprecated use SimpleStatistics instead |
---|
56 | */ |
---|
57 | |
---|
58 | public class KozaStatistics extends Statistics implements SteadyStateStatisticsForm |
---|
59 | { |
---|
60 | public Individual[] getBestSoFar() { return best_of_run; } |
---|
61 | |
---|
62 | /** log file parameter */ |
---|
63 | public static final String P_STATISTICS_FILE = "file"; |
---|
64 | |
---|
65 | /** The Statistics' log */ |
---|
66 | public int statisticslog; |
---|
67 | |
---|
68 | /** The best individual we've found so far */ |
---|
69 | public Individual[] best_of_run; |
---|
70 | |
---|
71 | /** compress? */ |
---|
72 | public static final String P_COMPRESS = "gzip"; |
---|
73 | |
---|
74 | public static final String P_FULL = "gather-full"; |
---|
75 | |
---|
76 | boolean doFull; |
---|
77 | |
---|
78 | // total number of individuals |
---|
79 | long numInds; |
---|
80 | |
---|
81 | // timings |
---|
82 | long lastTime; |
---|
83 | long initializationTime; |
---|
84 | long breedingTime; |
---|
85 | long evaluationTime; |
---|
86 | long nodesInitialized; |
---|
87 | long nodesEvaluated; |
---|
88 | long nodesBred; |
---|
89 | |
---|
90 | // memory usage info |
---|
91 | long lastUsage = 0; |
---|
92 | long initializationUsage = 0; |
---|
93 | long breedingUsage = 0; |
---|
94 | long evaluationUsage = 0; |
---|
95 | |
---|
96 | public KozaStatistics() { best_of_run = null; statisticslog = 0; /* stdout */ } |
---|
97 | |
---|
98 | public void setup(final EvolutionState state, final Parameter base) |
---|
99 | { |
---|
100 | super.setup(state,base); |
---|
101 | |
---|
102 | state.output.warnOnce("KozaStatistics is deprecated and will soon be deleted. Use SimpleStatistics instead."); |
---|
103 | |
---|
104 | File statisticsFile = state.parameters.getFile( |
---|
105 | base.push(P_STATISTICS_FILE),null); |
---|
106 | |
---|
107 | if (statisticsFile!=null) try |
---|
108 | { |
---|
109 | statisticslog = state.output.addLog(statisticsFile, |
---|
110 | !state.parameters.getBoolean(base.push(P_COMPRESS),null,false), |
---|
111 | state.parameters.getBoolean(base.push(P_COMPRESS),null,false)); |
---|
112 | } |
---|
113 | catch (IOException i) |
---|
114 | { |
---|
115 | state.output.fatal("An IOException occurred while trying to create the log " + statisticsFile + ":\n" + i); |
---|
116 | } |
---|
117 | |
---|
118 | doFull = state.parameters.getBoolean(base.push(P_FULL),null,false); |
---|
119 | nodesInitialized = nodesEvaluated = nodesBred = 0; |
---|
120 | breedingTime=evaluationTime=0; |
---|
121 | } |
---|
122 | |
---|
123 | |
---|
124 | public void preInitializationStatistics(final EvolutionState state) |
---|
125 | { |
---|
126 | super.preInitializationStatistics(state); |
---|
127 | if (doFull) |
---|
128 | { |
---|
129 | Runtime r = Runtime.getRuntime(); |
---|
130 | lastTime = System.currentTimeMillis(); |
---|
131 | lastUsage = r.totalMemory() - r.freeMemory(); |
---|
132 | } |
---|
133 | } |
---|
134 | |
---|
135 | public void postInitializationStatistics(final EvolutionState state) |
---|
136 | { |
---|
137 | super.postInitializationStatistics(state); |
---|
138 | |
---|
139 | // set up our best_of_run array -- can't do this in setup, because |
---|
140 | // we don't know if the number of subpopulations has been determined yet |
---|
141 | best_of_run = new Individual[state.population.subpops.length]; |
---|
142 | |
---|
143 | // gather timings |
---|
144 | if (doFull) |
---|
145 | { |
---|
146 | Runtime r = Runtime.getRuntime(); |
---|
147 | long curU = r.totalMemory() - r.freeMemory(); |
---|
148 | if (curU > lastUsage) initializationUsage = curU - lastUsage; |
---|
149 | initializationTime = System.currentTimeMillis()-lastTime; |
---|
150 | |
---|
151 | // Determine how many nodes we have |
---|
152 | for(int x=0;x<state.population.subpops.length;x++) |
---|
153 | { |
---|
154 | // check to make sure they're the right class |
---|
155 | if ( !(state.population.subpops[x].species instanceof GPSpecies )) |
---|
156 | state.output.fatal("Subpopulation " + x + |
---|
157 | " is not of the species form GPSpecies." + |
---|
158 | " Cannot do timing statistics with KozaStatistics."); |
---|
159 | |
---|
160 | for(int y=0;y<state.population.subpops[x].individuals.length;y++) |
---|
161 | { |
---|
162 | GPIndividual i = |
---|
163 | (GPIndividual)(state.population.subpops[x].individuals[y]); |
---|
164 | for(int z=0;z<i.trees.length;z++) |
---|
165 | nodesInitialized += i.trees[z].child.numNodes(GPNode.NODESEARCH_ALL); |
---|
166 | } |
---|
167 | } |
---|
168 | } |
---|
169 | } |
---|
170 | |
---|
171 | public void preBreedingStatistics(final EvolutionState state) |
---|
172 | { |
---|
173 | super.preBreedingStatistics(state); |
---|
174 | if (doFull) |
---|
175 | { |
---|
176 | Runtime r = Runtime.getRuntime(); |
---|
177 | lastTime = System.currentTimeMillis(); |
---|
178 | lastUsage = r.totalMemory() - r.freeMemory(); |
---|
179 | } |
---|
180 | } |
---|
181 | |
---|
182 | public void postBreedingStatistics(final EvolutionState state) |
---|
183 | { |
---|
184 | super.postBreedingStatistics(state); |
---|
185 | // gather timings |
---|
186 | if (doFull) |
---|
187 | { |
---|
188 | Runtime r = Runtime.getRuntime(); |
---|
189 | long curU = r.totalMemory() - r.freeMemory(); |
---|
190 | if (curU > lastUsage) breedingUsage += curU - lastUsage; |
---|
191 | breedingTime += System.currentTimeMillis()-lastTime; |
---|
192 | |
---|
193 | // Determine how many nodes we have |
---|
194 | for(int x=0;x<state.population.subpops.length;x++) |
---|
195 | { |
---|
196 | // check to make sure they're the right class |
---|
197 | if ( !(state.population.subpops[x].species instanceof GPSpecies )) |
---|
198 | state.output.fatal("Subpopulation " + x + |
---|
199 | " is not of the species form GPSpecies." + |
---|
200 | " Cannot do timing statistics with KozaStatistics."); |
---|
201 | |
---|
202 | for(int y=0;y<state.population.subpops[x].individuals.length;y++) |
---|
203 | { |
---|
204 | GPIndividual i = |
---|
205 | (GPIndividual)(state.population.subpops[x].individuals[y]); |
---|
206 | for(int z=0;z<i.trees.length;z++) |
---|
207 | nodesBred += i.trees[z].child.numNodes(GPNode.NODESEARCH_ALL); |
---|
208 | } |
---|
209 | } |
---|
210 | } |
---|
211 | } |
---|
212 | |
---|
213 | public void preEvaluationStatistics(final EvolutionState state) |
---|
214 | { |
---|
215 | super.preEvaluationStatistics(state); |
---|
216 | if (doFull) |
---|
217 | { |
---|
218 | Runtime r = Runtime.getRuntime(); |
---|
219 | lastTime = System.currentTimeMillis(); |
---|
220 | lastUsage = r.totalMemory() - r.freeMemory(); |
---|
221 | } |
---|
222 | } |
---|
223 | |
---|
224 | public void postEvaluationStatistics(final EvolutionState state) |
---|
225 | { |
---|
226 | super.postEvaluationStatistics(state); |
---|
227 | |
---|
228 | // Gather statistics |
---|
229 | Runtime r = Runtime.getRuntime(); |
---|
230 | long curU = r.totalMemory() - r.freeMemory(); |
---|
231 | if (curU > lastUsage) evaluationUsage += curU - lastUsage; |
---|
232 | if (doFull) evaluationTime += System.currentTimeMillis()-lastTime; |
---|
233 | |
---|
234 | |
---|
235 | state.output.println("\n\n\nGeneration " + state.generation + "\n================",statisticslog); |
---|
236 | |
---|
237 | Individual[] best_i = new Individual[state.population.subpops.length]; |
---|
238 | for(int x=0;x<state.population.subpops.length;x++) |
---|
239 | { |
---|
240 | state.output.println("\nSubpopulation " + x + "\n----------------",statisticslog); |
---|
241 | |
---|
242 | // gather timings |
---|
243 | if (doFull) |
---|
244 | { |
---|
245 | long totNodesPerGen = 0; |
---|
246 | long totDepthPerGen = 0; |
---|
247 | |
---|
248 | // check to make sure they're the right class |
---|
249 | if ( !(state.population.subpops[x].species instanceof GPSpecies )) |
---|
250 | state.output.fatal("Subpopulation " + x + |
---|
251 | " is not of the species form GPSpecies." + |
---|
252 | " Cannot do timing statistics with KozaStatistics."); |
---|
253 | |
---|
254 | long[] numNodes = new long[((GPIndividual)(state.population.subpops[x].species.i_prototype)).trees.length]; |
---|
255 | long[] numDepth = new long[((GPIndividual)(state.population.subpops[x].species.i_prototype)).trees.length]; |
---|
256 | |
---|
257 | for(int y=0;y<state.population.subpops[x].individuals.length;y++) |
---|
258 | { |
---|
259 | GPIndividual i = |
---|
260 | (GPIndividual)(state.population.subpops[x].individuals[y]); |
---|
261 | for(int z=0;z<i.trees.length;z++) |
---|
262 | { |
---|
263 | nodesEvaluated += i.trees[z].child.numNodes(GPNode.NODESEARCH_ALL); |
---|
264 | numNodes[z] += i.trees[z].child.numNodes(GPNode.NODESEARCH_ALL); |
---|
265 | numDepth[z] += i.trees[z].child.depth(); |
---|
266 | } |
---|
267 | } |
---|
268 | |
---|
269 | for(int tr=0;tr<numNodes.length;tr++) totNodesPerGen += numNodes[tr]; |
---|
270 | state.output.println("Avg Nodes: " + ((double)totNodesPerGen)/state.population.subpops[x].individuals.length, statisticslog); |
---|
271 | state.output.print("Nodes/tree: [", statisticslog); |
---|
272 | for(int tr=0;tr<numNodes.length;tr++) |
---|
273 | { |
---|
274 | if (tr>0) state.output.print("|", statisticslog); |
---|
275 | state.output.print(""+((double)numNodes[tr])/state.population.subpops[x].individuals.length, statisticslog); |
---|
276 | } |
---|
277 | state.output.println("]", statisticslog); |
---|
278 | |
---|
279 | |
---|
280 | for(int tr=0;tr<numDepth.length;tr++) totDepthPerGen += numDepth[tr]; |
---|
281 | state.output.println("Avg Depth: " + ((double)totDepthPerGen)/ |
---|
282 | (state.population.subpops[x].individuals.length * numDepth.length), statisticslog); |
---|
283 | state.output.print("Depth/tree: [", statisticslog); |
---|
284 | for(int tr=0;tr<numDepth.length;tr++) |
---|
285 | { |
---|
286 | if (tr>0) state.output.print("|", statisticslog); |
---|
287 | state.output.print(""+((double)numDepth[tr])/state.population.subpops[x].individuals.length, statisticslog); |
---|
288 | } |
---|
289 | state.output.println("]", statisticslog); |
---|
290 | |
---|
291 | } |
---|
292 | |
---|
293 | |
---|
294 | float meanStandardized = 0.0f; |
---|
295 | float meanAdjusted = 0.0f; |
---|
296 | long hits = 0; |
---|
297 | |
---|
298 | if (!(state.population.subpops[x].species.f_prototype instanceof KozaFitness)) |
---|
299 | state.output.fatal("Subpopulation " + x + |
---|
300 | " is not of the fitness KozaFitness. Cannot do timing statistics with KozaStatistics."); |
---|
301 | |
---|
302 | |
---|
303 | best_i[x] = state.population.subpops[x].individuals[0]; |
---|
304 | for(int y=0;y<state.population.subpops[x].individuals.length;y++) |
---|
305 | { |
---|
306 | // best individual |
---|
307 | if (state.population.subpops[x].individuals[y].fitness.betterThan(best_i[x].fitness)) |
---|
308 | best_i[x] = state.population.subpops[x].individuals[y]; |
---|
309 | // mean for population |
---|
310 | meanStandardized += ((KozaFitness)(state.population.subpops[x].individuals[y].fitness)).standardizedFitness(); |
---|
311 | meanAdjusted += ((KozaFitness)(state.population.subpops[x].individuals[y].fitness)).adjustedFitness(); |
---|
312 | hits += ((KozaFitness)(state.population.subpops[x].individuals[y].fitness)).hits; |
---|
313 | } |
---|
314 | |
---|
315 | // compute fitness stats |
---|
316 | meanStandardized /= state.population.subpops[x].individuals.length; |
---|
317 | meanAdjusted /= state.population.subpops[x].individuals.length; |
---|
318 | state.output.print("Mean fitness raw: " + meanStandardized + " adjusted: " + meanAdjusted + " hits: " + ((double)hits)/state.population.subpops[x].individuals.length, statisticslog); |
---|
319 | |
---|
320 | state.output.println("", statisticslog); |
---|
321 | |
---|
322 | // compute inds stats |
---|
323 | numInds += state.population.subpops[x].individuals.length; |
---|
324 | } |
---|
325 | |
---|
326 | // now test to see if it's the new best_of_run |
---|
327 | for(int x=0;x<state.population.subpops.length;x++) |
---|
328 | { |
---|
329 | if (best_of_run[x]==null || best_i[x].fitness.betterThan(best_of_run[x].fitness)) |
---|
330 | best_of_run[x] = (Individual)(best_i[x].clone()); |
---|
331 | |
---|
332 | // print the best-of-generation individual |
---|
333 | state.output.println("\nBest Individual of Generation:",statisticslog); |
---|
334 | best_i[x].printIndividualForHumans(state,statisticslog); |
---|
335 | state.output.message("Subpop " + x + " best fitness of generation: " + best_i[x].fitness.fitnessToStringForHumans()); |
---|
336 | } |
---|
337 | } |
---|
338 | |
---|
339 | |
---|
340 | /** Logs the best individual of the run. */ |
---|
341 | public void finalStatistics(final EvolutionState state, final int result) |
---|
342 | { |
---|
343 | super.finalStatistics(state,result); |
---|
344 | |
---|
345 | state.output.println("\n\n\nFinal Statistics\n================",statisticslog); |
---|
346 | |
---|
347 | state.output.println("Total Individuals Evaluated: " + numInds,statisticslog); |
---|
348 | // for now we just print the best fitness |
---|
349 | |
---|
350 | state.output.println("\nBest Individual of Run:",statisticslog); |
---|
351 | for(int x=0;x<state.population.subpops.length;x++) |
---|
352 | { |
---|
353 | best_of_run[x].printIndividualForHumans(state,statisticslog); |
---|
354 | state.output.message("Subpop " + x + " best fitness of run: " + best_of_run[x].fitness.fitnessToStringForHumans()); |
---|
355 | |
---|
356 | // finally describe the winner if there is a description |
---|
357 | ((SimpleProblemForm)(state.evaluator.p_problem.clone())).describe(state, best_of_run[x], x, 0, statisticslog); |
---|
358 | } |
---|
359 | |
---|
360 | // Output timings |
---|
361 | if (doFull) |
---|
362 | { |
---|
363 | state.output.println("\n\n\nTimings\n=======",statisticslog); |
---|
364 | |
---|
365 | state.output.println("Initialization: " + ((float)initializationTime)/1000 + " secs total, " + nodesInitialized + " nodes, " + nodesInitialized/(((float)initializationTime)/1000) + " nodes/sec",statisticslog); |
---|
366 | state.output.println("Evaluating: " + ((float)evaluationTime)/1000 + " secs total, " + nodesEvaluated + " nodes, " + nodesEvaluated/(((float)evaluationTime)/1000) + " nodes/sec",statisticslog); |
---|
367 | state.output.println("Breeding: " + ((float)breedingTime)/1000 + " secs total, " + nodesBred + " nodes, " + nodesBred/(((float)breedingTime)/1000) + " nodes/sec",statisticslog); |
---|
368 | |
---|
369 | state.output.println("\n\n\nMemory Usage\n==============",statisticslog); |
---|
370 | state.output.println("Initialization: " + ((float)initializationUsage)/1024 + " KB total, " + nodesInitialized + " nodes, " + nodesInitialized/(((float)initializationUsage)/1024) + " nodes/KB",statisticslog); |
---|
371 | state.output.println("Evaluating: " + ((float)evaluationUsage)/1024 + " KB total, " + nodesEvaluated + " nodes, " + nodesEvaluated/(((float)evaluationUsage)/1024) + " nodes/KB",statisticslog); |
---|
372 | state.output.println("Breeding: " + ((float)breedingUsage)/1024 + " KB total, " + nodesBred + " nodes, " + nodesBred/(((float)breedingUsage)/1024) + " nodes/KB",statisticslog); |
---|
373 | } |
---|
374 | |
---|
375 | } |
---|
376 | |
---|
377 | } |
---|