1 | /* |
---|
2 | Copyright 2006 by Sean Luke |
---|
3 | Licensed under the Academic Free License version 3.0 |
---|
4 | See the file "LICENSE" for more information |
---|
5 | */ |
---|
6 | |
---|
7 | |
---|
8 | package ec.gp.koza; |
---|
9 | import ec.util.*; |
---|
10 | import ec.*; |
---|
11 | import java.io.*; |
---|
12 | |
---|
13 | /* |
---|
14 | * KozaFitness.java |
---|
15 | * |
---|
16 | * Created: Fri Oct 15 14:26:44 1999 |
---|
17 | * By: Sean Luke |
---|
18 | */ |
---|
19 | |
---|
20 | /** |
---|
21 | * KozaFitness is a Fitness which stores an individual's fitness as described in |
---|
22 | * Koza I. Well, almost. In KozaFitness, standardized fitness and raw fitness |
---|
23 | * are considered the same (there are different methods for them, but they return |
---|
24 | * the same thing). Standardized fitness ranges from 0.0 inclusive (the best) |
---|
25 | * to infinity exclusive (the worst). Adjusted fitness converts this, using |
---|
26 | * the formula adj_f = 1/(1+f), into a scale from 0.0 exclusive (worst) to 1.0 |
---|
27 | * inclusive (best). While it's the standardized fitness that is stored, it |
---|
28 | * is the adjusted fitness that is printed out. |
---|
29 | * This is all just convenience stuff anyway; selection methods |
---|
30 | * generally don't use these fitness values but instead use the betterThan |
---|
31 | * and equalTo methods. |
---|
32 | * |
---|
33 | <p><b>Default Base</b><br> |
---|
34 | gp.koza.fitness |
---|
35 | * |
---|
36 | * |
---|
37 | * @author Sean Luke |
---|
38 | * @version 1.0 |
---|
39 | */ |
---|
40 | |
---|
41 | public class KozaFitness extends Fitness |
---|
42 | { |
---|
43 | public static final String P_KOZAFITNESS = "fitness"; |
---|
44 | |
---|
45 | /** This ranges from 0 (best) to infinity (worst). I |
---|
46 | define it here as equivalent to the standardized fitness. */ |
---|
47 | protected float standardizedFitness; |
---|
48 | |
---|
49 | /** This auxillary measure is used in some problems for additional |
---|
50 | information. It's a traditional feature of Koza-style GP, and so |
---|
51 | although I think it's not very useful, I'll leave it in anyway. */ |
---|
52 | public int hits; |
---|
53 | |
---|
54 | public Parameter defaultBase() |
---|
55 | { |
---|
56 | return GPKozaDefaults.base().push(P_KOZAFITNESS); |
---|
57 | } |
---|
58 | |
---|
59 | /** |
---|
60 | Do not use this function. Use the identical setStandardizedFitness() instead. |
---|
61 | The reason for the name change is that fitness() returns a differently-defined |
---|
62 | value than setFitness() sets, ugh. |
---|
63 | @deprecated |
---|
64 | */ |
---|
65 | public final void setFitness(final EvolutionState state, final float _f) |
---|
66 | { |
---|
67 | setStandardizedFitness(state,_f); |
---|
68 | } |
---|
69 | |
---|
70 | /** Set the standardized fitness in the half-open interval [0.0,infinity) |
---|
71 | which is defined (NOTE: DIFFERENT FROM fitness()!!!) as 0.0 |
---|
72 | being the IDEAL and infinity being worse than the worst possible. |
---|
73 | This is the GP tradition. The fitness() function instead will output |
---|
74 | the equivalent of Adjusted Fitness. |
---|
75 | */ |
---|
76 | public final void setStandardizedFitness(final EvolutionState state, final float _f) |
---|
77 | { |
---|
78 | if (_f < 0.0f || _f == Float.POSITIVE_INFINITY || Float.isNaN(_f)) |
---|
79 | { |
---|
80 | state.output.warning("Bad fitness (may not be < 0, NaN, or infinity): " + _f + ", setting to 0."); |
---|
81 | standardizedFitness = 0; |
---|
82 | } |
---|
83 | else standardizedFitness = _f; |
---|
84 | } |
---|
85 | |
---|
86 | /** Returns the adjusted fitness metric, which recasts the |
---|
87 | fitness to the half-open interval (0,1], where 1 is ideal and |
---|
88 | 0 is worst. Same as adjustedFitness(). */ |
---|
89 | |
---|
90 | public final float fitness() |
---|
91 | { |
---|
92 | return 1.0f/(1.0f+standardizedFitness); |
---|
93 | } |
---|
94 | |
---|
95 | /** Returns the raw fitness metric. |
---|
96 | @deprecated use standardizedFitness() |
---|
97 | */ |
---|
98 | public final float rawFitness() |
---|
99 | { |
---|
100 | return standardizedFitness(); |
---|
101 | } |
---|
102 | |
---|
103 | /** Returns the standardized fitness metric. */ |
---|
104 | |
---|
105 | public final float standardizedFitness() |
---|
106 | { |
---|
107 | return standardizedFitness; |
---|
108 | } |
---|
109 | |
---|
110 | /** Returns the adjusted fitness metric, which recasts the fitness |
---|
111 | to the half-open interval (0,1], where 1 is ideal and 0 is worst. |
---|
112 | This metric is used when printing the fitness out. */ |
---|
113 | |
---|
114 | public final float adjustedFitness() |
---|
115 | { |
---|
116 | return fitness(); |
---|
117 | } |
---|
118 | |
---|
119 | public void setup(final EvolutionState state, final Parameter base) { } |
---|
120 | |
---|
121 | public final boolean isIdealFitness() |
---|
122 | { |
---|
123 | return standardizedFitness == 0.0f; |
---|
124 | } |
---|
125 | |
---|
126 | public boolean equivalentTo(final Fitness _fitness) |
---|
127 | { |
---|
128 | return _fitness.fitness() == fitness(); |
---|
129 | } |
---|
130 | |
---|
131 | public boolean betterThan(final Fitness _fitness) |
---|
132 | { |
---|
133 | return _fitness.fitness() < fitness(); |
---|
134 | } |
---|
135 | |
---|
136 | public String fitnessToString() |
---|
137 | { |
---|
138 | return FITNESS_PREAMBLE + Code.encode(standardizedFitness) + Code.encode(hits); |
---|
139 | } |
---|
140 | |
---|
141 | public String fitnessToStringForHumans() |
---|
142 | { |
---|
143 | return FITNESS_PREAMBLE + "Standardized=" + standardizedFitness + " Adjusted=" + adjustedFitness() + " Hits=" + hits; |
---|
144 | } |
---|
145 | |
---|
146 | public final void readFitness(final EvolutionState state, |
---|
147 | final LineNumberReader reader) |
---|
148 | throws IOException |
---|
149 | { |
---|
150 | DecodeReturn d = Code.checkPreamble(FITNESS_PREAMBLE, state, reader); |
---|
151 | |
---|
152 | // extract fitness |
---|
153 | Code.decode(d); |
---|
154 | if (d.type!=DecodeReturn.T_FLOAT) |
---|
155 | state.output.fatal("Reading Line " + d.lineNumber + ": " + |
---|
156 | "Bad Fitness."); |
---|
157 | standardizedFitness = (float)d.d; |
---|
158 | |
---|
159 | // extract hits |
---|
160 | Code.decode(d); |
---|
161 | if (d.type!=DecodeReturn.T_INT) |
---|
162 | state.output.fatal("Reading Line " + d.lineNumber + ": " + |
---|
163 | "Bad Fitness."); |
---|
164 | hits = (int)d.l; |
---|
165 | } |
---|
166 | |
---|
167 | public void writeFitness(final EvolutionState state, |
---|
168 | final DataOutput dataOutput) throws IOException |
---|
169 | { |
---|
170 | dataOutput.writeFloat(standardizedFitness); |
---|
171 | dataOutput.writeInt(hits); |
---|
172 | } |
---|
173 | |
---|
174 | public void readFitness(final EvolutionState state, |
---|
175 | final DataInput dataInput) throws IOException |
---|
176 | { |
---|
177 | standardizedFitness = dataInput.readFloat(); |
---|
178 | hits = dataInput.readInt(); |
---|
179 | } |
---|
180 | |
---|
181 | public void setToMeanOf(EvolutionState state, Fitness[] fitnesses) |
---|
182 | { |
---|
183 | // this is not numerically stable. Perhaps we should have a numerically stable algorithm for sums |
---|
184 | // we're presuming it's not a very large number of elements, so it's probably not a big deal, |
---|
185 | // since this function is meant to be used mostly for gathering trials together. |
---|
186 | double f = 0; |
---|
187 | long h = 0; |
---|
188 | for(int i = 0; i < fitnesses.length; i++) |
---|
189 | { |
---|
190 | KozaFitness fit = (KozaFitness)(fitnesses[i]); |
---|
191 | f += fit.standardizedFitness; |
---|
192 | h += fit.hits; |
---|
193 | } |
---|
194 | f /= fitnesses.length; |
---|
195 | h /= fitnesses.length; |
---|
196 | standardizedFitness = (float)f; |
---|
197 | hits = (int)h; |
---|
198 | } |
---|
199 | } |
---|