1 | /* |
---|
2 | Copyright 2006 by Sean Luke |
---|
3 | Licensed under the Academic Free License version 3.0 |
---|
4 | See the file "LICENSE" for more information |
---|
5 | */ |
---|
6 | |
---|
7 | |
---|
8 | package ec.gp.koza; |
---|
9 | import ec.*; |
---|
10 | import ec.util.*; |
---|
11 | import ec.gp.*; |
---|
12 | |
---|
13 | /* |
---|
14 | * CrossoverPipeline.java |
---|
15 | * |
---|
16 | * Created: Mon Aug 30 19:15:21 1999 |
---|
17 | * By: Sean Luke |
---|
18 | */ |
---|
19 | |
---|
20 | |
---|
21 | /** |
---|
22 | * CrossoverPipeline is a GPBreedingPipeline which performs a strongly-typed |
---|
23 | * version of |
---|
24 | * Koza-style "Subtree Crossover". Two individuals are selected, |
---|
25 | * then a single tree is chosen in each such that the two trees |
---|
26 | * have the same GPTreeConstraints. Then a random node is chosen |
---|
27 | * in each tree such that the two nodes have the same return type. |
---|
28 | * If by swapping subtrees at these nodes the two trees will not |
---|
29 | * violate maximum depth constraints, then the trees perform the |
---|
30 | * swap, otherwise, they repeat the hunt for random nodes. |
---|
31 | * |
---|
32 | * <p>The pipeline tries at most <i>tries</i> times to a pair |
---|
33 | * of random nodes BOTH with valid swap constraints. If it |
---|
34 | * cannot find any such pairs after <i>tries</i> times, it |
---|
35 | * uses the pair of its last attempt. If either of the nodes in the pair |
---|
36 | * is valid, that node gets substituted with the other node. Otherwise |
---|
37 | * an individual invalid node isn't changed at all (it's "reproduced"). |
---|
38 | * |
---|
39 | * <p><b>Compatibility with constraints.</b> |
---|
40 | * Since Koza-I/II only tries 1 time, and then follows this policy, this is |
---|
41 | * compatible with Koza. lil-gp either tries 1 time, or tries forever. |
---|
42 | * Either way, this is compatible with lil-gp. My hacked |
---|
43 | * <a href="http://www.cs.umd.edu/users/seanl/gp/">lil-gp kernel</a> |
---|
44 | * either tries 1 time, <i>n</i> times, or forever. This is compatible |
---|
45 | * as well. |
---|
46 | * |
---|
47 | * <p>This pipeline typically produces up to 2 new individuals (the two newly- |
---|
48 | * swapped individuals) per produce(...) call. If the system only |
---|
49 | * needs a single individual, the pipeline will throw one of the |
---|
50 | * new individuals away. The user can also have the pipeline always |
---|
51 | * throw away the second new individual instead of adding it to the population. |
---|
52 | * In this case, the pipeline will only typically |
---|
53 | * produce 1 new individual per produce(...) call. |
---|
54 | |
---|
55 | <p><b>Typical Number of Individuals Produced Per <tt>produce(...)</tt> call</b><br> |
---|
56 | 2 * minimum typical number of individuals produced by each source, unless tossSecondParent |
---|
57 | is set, in which case it's simply the minimum typical number. |
---|
58 | |
---|
59 | <p><b>Number of Sources</b><br> |
---|
60 | 2 |
---|
61 | |
---|
62 | <p><b>Parameters</b><br> |
---|
63 | <table> |
---|
64 | <tr><td valign=top><i>base</i>.<tt>tries</tt><br> |
---|
65 | <font size=-1>int >= 1</font></td> |
---|
66 | <td valign=top>(number of times to try finding valid pairs of nodes)</td></tr> |
---|
67 | |
---|
68 | <tr><td valign=top><i>base</i>.<tt>maxdepth</tt><br> |
---|
69 | <font size=-1>int >= 1</font></td> |
---|
70 | <td valign=top>(maximum valid depth of a crossed-over subtree)</td></tr> |
---|
71 | |
---|
72 | <tr><td valign=top><i>base</i>.<tt>tree.0</tt><br> |
---|
73 | <font size=-1>0 < int < (num trees in individuals), if exists</font></td> |
---|
74 | <td valign=top>(first tree for the crossover; if parameter doesn't exist, tree is picked at random)</td></tr> |
---|
75 | |
---|
76 | <tr><td valign=top><i>base</i>.<tt>tree.1</tt><br> |
---|
77 | <font size=-1>0 < int < (num trees in individuals), if exists</font></td> |
---|
78 | <td valign=top>(second tree for the crossover; if parameter doesn't exist, tree is picked at random. This tree <b>must</b> have the same GPTreeConstraints as <tt>tree.0</tt>, if <tt>tree.0</tt> is defined.)</td></tr> |
---|
79 | |
---|
80 | <tr><td valign=top><i>base</i>.<tt>ns.</tt><i>n</i><br> |
---|
81 | <font size=-1>classname, inherits and != GPNodeSelector,<br> |
---|
82 | or String <tt>same<tt></font></td> |
---|
83 | <td valign=top>(GPNodeSelector for parent <i>n</i> (n is 0 or 1) If, for <tt>ns.1</tt> the value is <tt>same</tt>, then <tt>ns.1</tt> a copy of whatever <tt>ns.0</tt> is. Note that the default version has no <i>n</i>)</td></tr> |
---|
84 | |
---|
85 | <tr><td valign=top><i>base</i>.<tt>toss</tt><br> |
---|
86 | <font size=-1>bool = <tt>true</tt> or <tt>false</tt> (default)</font>/td> |
---|
87 | <td valign=top>(after crossing over with the first new individual, should its second sibling individual be thrown away instead of adding it to the population?)</td></tr> |
---|
88 | </table> |
---|
89 | |
---|
90 | <p><b>Default Base</b><br> |
---|
91 | gp.koza.xover |
---|
92 | |
---|
93 | <p><b>Parameter bases</b><br> |
---|
94 | <table> |
---|
95 | <tr><td valign=top><i>base</i>.<tt>ns.</tt><i>n</i><br> |
---|
96 | <td>nodeselect<i>n</i> (<i>n</i> is 0 or 1)</td></tr> |
---|
97 | </table> |
---|
98 | |
---|
99 | * |
---|
100 | * @author Sean Luke |
---|
101 | * @version 1.0 |
---|
102 | */ |
---|
103 | |
---|
104 | public class CrossoverPipeline extends GPBreedingPipeline |
---|
105 | { |
---|
106 | public static final String P_NUM_TRIES = "tries"; |
---|
107 | public static final String P_MAXDEPTH = "maxdepth"; |
---|
108 | public static final String P_CROSSOVER = "xover"; |
---|
109 | public static final String P_TOSS = "toss"; |
---|
110 | public static final int INDS_PRODUCED = 2; |
---|
111 | public static final int NUM_SOURCES = 2; |
---|
112 | |
---|
113 | /** How the pipeline selects a node from individual 1 */ |
---|
114 | public GPNodeSelector nodeselect1; |
---|
115 | |
---|
116 | /** How the pipeline selects a node from individual 2 */ |
---|
117 | public GPNodeSelector nodeselect2; |
---|
118 | |
---|
119 | /** Is the first tree fixed? If not, this is -1 */ |
---|
120 | public int tree1; |
---|
121 | |
---|
122 | /** Is the second tree fixed? If not, this is -1 */ |
---|
123 | public int tree2; |
---|
124 | |
---|
125 | /** How many times the pipeline attempts to pick nodes until it gives up. */ |
---|
126 | public int numTries; |
---|
127 | |
---|
128 | /** The deepest tree the pipeline is allowed to form. Single terminal trees are depth 1. */ |
---|
129 | public int maxDepth; |
---|
130 | |
---|
131 | /** Should the pipeline discard the second parent after crossing over? */ |
---|
132 | public boolean tossSecondParent; |
---|
133 | |
---|
134 | /** Temporary holding place for parents */ |
---|
135 | public GPIndividual parents[]; |
---|
136 | |
---|
137 | public CrossoverPipeline() { parents = new GPIndividual[2]; } |
---|
138 | |
---|
139 | public Parameter defaultBase() { return GPKozaDefaults.base().push(P_CROSSOVER); } |
---|
140 | |
---|
141 | public int numSources() { return NUM_SOURCES; } |
---|
142 | |
---|
143 | public Object clone() |
---|
144 | { |
---|
145 | CrossoverPipeline c = (CrossoverPipeline)(super.clone()); |
---|
146 | |
---|
147 | // deep-cloned stuff |
---|
148 | c.nodeselect1 = (GPNodeSelector)(nodeselect1.clone()); |
---|
149 | c.nodeselect2 = (GPNodeSelector)(nodeselect2.clone()); |
---|
150 | c.parents = (GPIndividual[]) parents.clone(); |
---|
151 | |
---|
152 | return c; |
---|
153 | } |
---|
154 | |
---|
155 | public void setup(final EvolutionState state, final Parameter base) |
---|
156 | { |
---|
157 | super.setup(state,base); |
---|
158 | |
---|
159 | Parameter def = defaultBase(); |
---|
160 | Parameter p = base.push(P_NODESELECTOR).push("0"); |
---|
161 | Parameter d = def.push(P_NODESELECTOR).push("0"); |
---|
162 | |
---|
163 | nodeselect1 = (GPNodeSelector) |
---|
164 | (state.parameters.getInstanceForParameter( |
---|
165 | p,d, GPNodeSelector.class)); |
---|
166 | nodeselect1.setup(state,p); |
---|
167 | |
---|
168 | p = base.push(P_NODESELECTOR).push("1"); |
---|
169 | d = def.push(P_NODESELECTOR).push("1"); |
---|
170 | |
---|
171 | if (state.parameters.exists(p,d) && |
---|
172 | state.parameters.getString(p,d).equals(V_SAME)) |
---|
173 | // can't just copy it this time; the selectors |
---|
174 | // use internal caches. So we have to clone it no matter what |
---|
175 | nodeselect2 = (GPNodeSelector)(nodeselect1.clone()); |
---|
176 | else |
---|
177 | { |
---|
178 | nodeselect2 = (GPNodeSelector) |
---|
179 | (state.parameters.getInstanceForParameter( |
---|
180 | p,d, GPNodeSelector.class)); |
---|
181 | nodeselect2.setup(state,p); |
---|
182 | } |
---|
183 | |
---|
184 | numTries = state.parameters.getInt(base.push(P_NUM_TRIES), |
---|
185 | def.push(P_NUM_TRIES),1); |
---|
186 | if (numTries == 0) |
---|
187 | state.output.fatal("GPCrossover Pipeline has an invalid number of tries (it must be >= 1).",base.push(P_NUM_TRIES),def.push(P_NUM_TRIES)); |
---|
188 | |
---|
189 | maxDepth = state.parameters.getInt(base.push(P_MAXDEPTH),def.push(P_MAXDEPTH),1); |
---|
190 | if (maxDepth==0) |
---|
191 | state.output.fatal("GPCrossover Pipeline has an invalid maximum depth (it must be >= 1).",base.push(P_MAXDEPTH),def.push(P_MAXDEPTH)); |
---|
192 | |
---|
193 | tree1 = TREE_UNFIXED; |
---|
194 | if (state.parameters.exists(base.push(P_TREE).push(""+0), |
---|
195 | def.push(P_TREE).push(""+0))) |
---|
196 | { |
---|
197 | tree1 = state.parameters.getInt(base.push(P_TREE).push(""+0), |
---|
198 | def.push(P_TREE).push(""+0),0); |
---|
199 | if (tree1==-1) |
---|
200 | state.output.fatal("Tree fixed value, if defined, must be >= 0"); |
---|
201 | } |
---|
202 | |
---|
203 | tree2 = TREE_UNFIXED; |
---|
204 | if (state.parameters.exists(base.push(P_TREE).push(""+1), |
---|
205 | def.push(P_TREE).push(""+1))) |
---|
206 | { |
---|
207 | tree2 = state.parameters.getInt(base.push(P_TREE).push(""+1), |
---|
208 | def.push(P_TREE).push(""+1),0); |
---|
209 | if (tree2==-1) |
---|
210 | state.output.fatal("Tree fixed value, if defined, must be >= 0"); |
---|
211 | } |
---|
212 | tossSecondParent = state.parameters.getBoolean(base.push(P_TOSS), |
---|
213 | def.push(P_TOSS),false); |
---|
214 | |
---|
215 | } |
---|
216 | |
---|
217 | /** Returns 2 * minimum number of typical individuals produced by any sources, else |
---|
218 | 1* minimum number if tossSecondParent is true. */ |
---|
219 | public int typicalIndsProduced() |
---|
220 | { |
---|
221 | return (tossSecondParent? minChildProduction(): minChildProduction()*2); |
---|
222 | } |
---|
223 | |
---|
224 | /** Returns true if inner1 can feasibly be swapped into inner2's position. */ |
---|
225 | |
---|
226 | public boolean verifyPoints(final GPInitializer initializer, |
---|
227 | final GPNode inner1, final GPNode inner2) |
---|
228 | { |
---|
229 | // first check to see if inner1 is swap-compatible with inner2 |
---|
230 | // on a type basis |
---|
231 | if (!inner1.swapCompatibleWith(initializer, inner2)) return false; |
---|
232 | |
---|
233 | // next check to see if inner1 can fit in inner2's spot |
---|
234 | if (inner1.depth()+inner2.atDepth() > maxDepth) return false; |
---|
235 | |
---|
236 | // checks done! |
---|
237 | return true; |
---|
238 | } |
---|
239 | |
---|
240 | |
---|
241 | public int produce(final int min, |
---|
242 | final int max, |
---|
243 | final int start, |
---|
244 | final int subpopulation, |
---|
245 | final Individual[] inds, |
---|
246 | final EvolutionState state, |
---|
247 | final int thread) |
---|
248 | |
---|
249 | { |
---|
250 | // how many individuals should we make? |
---|
251 | int n = typicalIndsProduced(); |
---|
252 | if (n < min) n = min; |
---|
253 | if (n > max) n = max; |
---|
254 | |
---|
255 | // should we bother? |
---|
256 | if (!state.random[thread].nextBoolean(likelihood)) |
---|
257 | return reproduce(n, start, subpopulation, inds, state, thread, true); // DO produce children from source -- we've not done so already |
---|
258 | |
---|
259 | |
---|
260 | |
---|
261 | GPInitializer initializer = ((GPInitializer)state.initializer); |
---|
262 | |
---|
263 | for(int q=start;q<n+start; /* no increment */) // keep on going until we're filled up |
---|
264 | { |
---|
265 | // grab two individuals from our sources |
---|
266 | if (sources[0]==sources[1]) // grab from the same source |
---|
267 | sources[0].produce(2,2,0,subpopulation,parents,state,thread); |
---|
268 | else // grab from different sources |
---|
269 | { |
---|
270 | sources[0].produce(1,1,0,subpopulation,parents,state,thread); |
---|
271 | sources[1].produce(1,1,1,subpopulation,parents,state,thread); |
---|
272 | } |
---|
273 | |
---|
274 | // at this point, parents[] contains our two selected individuals |
---|
275 | |
---|
276 | // are our tree values valid? |
---|
277 | if (tree1!=TREE_UNFIXED && (tree1<0 || tree1 >= parents[0].trees.length)) |
---|
278 | // uh oh |
---|
279 | state.output.fatal("GP Crossover Pipeline attempted to fix tree.0 to a value which was out of bounds of the array of the individual's trees. Check the pipeline's fixed tree values -- they may be negative or greater than the number of trees in an individual"); |
---|
280 | if (tree2!=TREE_UNFIXED && (tree2<0 || tree2 >= parents[1].trees.length)) |
---|
281 | // uh oh |
---|
282 | state.output.fatal("GP Crossover Pipeline attempted to fix tree.1 to a value which was out of bounds of the array of the individual's trees. Check the pipeline's fixed tree values -- they may be negative or greater than the number of trees in an individual"); |
---|
283 | |
---|
284 | int t1=0; int t2=0; |
---|
285 | if (tree1==TREE_UNFIXED || tree2==TREE_UNFIXED) |
---|
286 | { |
---|
287 | do |
---|
288 | // pick random trees -- their GPTreeConstraints must be the same |
---|
289 | { |
---|
290 | if (tree1==TREE_UNFIXED) |
---|
291 | if (parents[0].trees.length > 1) |
---|
292 | t1 = state.random[thread].nextInt(parents[0].trees.length); |
---|
293 | else t1 = 0; |
---|
294 | else t1 = tree1; |
---|
295 | |
---|
296 | if (tree2==TREE_UNFIXED) |
---|
297 | if (parents[1].trees.length>1) |
---|
298 | t2 = state.random[thread].nextInt(parents[1].trees.length); |
---|
299 | else t2 = 0; |
---|
300 | else t2 = tree2; |
---|
301 | } while (parents[0].trees[t1].constraints(initializer) != parents[1].trees[t2].constraints(initializer)); |
---|
302 | } |
---|
303 | else |
---|
304 | { |
---|
305 | t1 = tree1; |
---|
306 | t2 = tree2; |
---|
307 | // make sure the constraints are okay |
---|
308 | if (parents[0].trees[t1].constraints(initializer) |
---|
309 | != parents[1].trees[t2].constraints(initializer)) // uh oh |
---|
310 | state.output.fatal("GP Crossover Pipeline's two tree choices are both specified by the user -- but their GPTreeConstraints are not the same"); |
---|
311 | } |
---|
312 | |
---|
313 | |
---|
314 | |
---|
315 | // validity results... |
---|
316 | boolean res1 = false; |
---|
317 | boolean res2 = false; |
---|
318 | |
---|
319 | |
---|
320 | // prepare the nodeselectors |
---|
321 | nodeselect1.reset(); |
---|
322 | nodeselect2.reset(); |
---|
323 | |
---|
324 | |
---|
325 | // pick some nodes |
---|
326 | |
---|
327 | GPNode p1=null; |
---|
328 | GPNode p2=null; |
---|
329 | |
---|
330 | for(int x=0;x<numTries;x++) |
---|
331 | { |
---|
332 | // pick a node in individual 1 |
---|
333 | p1 = nodeselect1.pickNode(state,subpopulation,thread,parents[0],parents[0].trees[t1]); |
---|
334 | |
---|
335 | // pick a node in individual 2 |
---|
336 | p2 = nodeselect2.pickNode(state,subpopulation,thread,parents[1],parents[1].trees[t2]); |
---|
337 | |
---|
338 | // check for depth and swap-compatibility limits |
---|
339 | res1 = verifyPoints(initializer,p2,p1); // p2 can fill p1's spot -- order is important! |
---|
340 | if (n-(q-start)<2 || tossSecondParent) res2 = true; |
---|
341 | else res2 = verifyPoints(initializer,p1,p2); // p1 can fill p2's spot -- order is important! |
---|
342 | |
---|
343 | // did we get something that had both nodes verified? |
---|
344 | // we reject if EITHER of them is invalid. This is what lil-gp does. |
---|
345 | // Koza only has numTries set to 1, so it's compatible as well. |
---|
346 | if (res1 && res2) break; |
---|
347 | } |
---|
348 | |
---|
349 | // at this point, res1 AND res2 are valid, OR |
---|
350 | // either res1 OR res2 is valid and we ran out of tries, OR |
---|
351 | // neither res1 nor res2 is valid and we rand out of tries. |
---|
352 | // So now we will transfer to a tree which has res1 or res2 |
---|
353 | // valid, otherwise it'll just get replicated. This is |
---|
354 | // compatible with both Koza and lil-gp. |
---|
355 | |
---|
356 | |
---|
357 | // at this point I could check to see if my sources were breeding |
---|
358 | // pipelines -- but I'm too lazy to write that code (it's a little |
---|
359 | // complicated) to just swap one individual over or both over, |
---|
360 | // -- it might still entail some copying. Perhaps in the future. |
---|
361 | // It would make things faster perhaps, not requiring all that |
---|
362 | // cloning. |
---|
363 | |
---|
364 | |
---|
365 | |
---|
366 | // Create some new individuals based on the old ones -- since |
---|
367 | // GPTree doesn't deep-clone, this should be just fine. Perhaps we |
---|
368 | // should change this to proto off of the main species prototype, but |
---|
369 | // we have to then copy so much stuff over; it's not worth it. |
---|
370 | |
---|
371 | GPIndividual j1 = (GPIndividual)(parents[0].lightClone()); |
---|
372 | GPIndividual j2 = null; |
---|
373 | if (n-(q-start)>=2 && !tossSecondParent) j2 = (GPIndividual)(parents[1].lightClone()); |
---|
374 | |
---|
375 | // Fill in various tree information that didn't get filled in there |
---|
376 | j1.trees = new GPTree[parents[0].trees.length]; |
---|
377 | if (n-(q-start)>=2 && !tossSecondParent) j2.trees = new GPTree[parents[1].trees.length]; |
---|
378 | |
---|
379 | // at this point, p1 or p2, or both, may be null. |
---|
380 | // If not, swap one in. Else just copy the parent. |
---|
381 | |
---|
382 | for(int x=0;x<j1.trees.length;x++) |
---|
383 | { |
---|
384 | if (x==t1 && res1) // we've got a tree with a kicking cross position! |
---|
385 | { |
---|
386 | j1.trees[x] = (GPTree)(parents[0].trees[x].lightClone()); |
---|
387 | j1.trees[x].owner = j1; |
---|
388 | j1.trees[x].child = parents[0].trees[x].child.cloneReplacing(p2,p1); |
---|
389 | j1.trees[x].child.parent = j1.trees[x]; |
---|
390 | j1.trees[x].child.argposition = 0; |
---|
391 | j1.evaluated = false; |
---|
392 | } // it's changed |
---|
393 | else |
---|
394 | { |
---|
395 | j1.trees[x] = (GPTree)(parents[0].trees[x].lightClone()); |
---|
396 | j1.trees[x].owner = j1; |
---|
397 | j1.trees[x].child = (GPNode)(parents[0].trees[x].child.clone()); |
---|
398 | j1.trees[x].child.parent = j1.trees[x]; |
---|
399 | j1.trees[x].child.argposition = 0; |
---|
400 | } |
---|
401 | } |
---|
402 | |
---|
403 | if (n-(q-start)>=2 && !tossSecondParent) |
---|
404 | for(int x=0;x<j2.trees.length;x++) |
---|
405 | { |
---|
406 | if (x==t2 && res2) // we've got a tree with a kicking cross position! |
---|
407 | { |
---|
408 | j2.trees[x] = (GPTree)(parents[1].trees[x].lightClone()); |
---|
409 | j2.trees[x].owner = j2; |
---|
410 | j2.trees[x].child = parents[1].trees[x].child.cloneReplacing(p1,p2); |
---|
411 | j2.trees[x].child.parent = j2.trees[x]; |
---|
412 | j2.trees[x].child.argposition = 0; |
---|
413 | j2.evaluated = false; |
---|
414 | } // it's changed |
---|
415 | else |
---|
416 | { |
---|
417 | j2.trees[x] = (GPTree)(parents[1].trees[x].lightClone()); |
---|
418 | j2.trees[x].owner = j2; |
---|
419 | j2.trees[x].child = (GPNode)(parents[1].trees[x].child.clone()); |
---|
420 | j2.trees[x].child.parent = j2.trees[x]; |
---|
421 | j2.trees[x].child.argposition = 0; |
---|
422 | } |
---|
423 | } |
---|
424 | |
---|
425 | // add the individuals to the population |
---|
426 | inds[q] = j1; |
---|
427 | q++; |
---|
428 | if (q<n+start && !tossSecondParent) |
---|
429 | { |
---|
430 | inds[q] = j2; |
---|
431 | q++; |
---|
432 | } |
---|
433 | } |
---|
434 | return n; |
---|
435 | } |
---|
436 | } |
---|