1 | /* |
---|
2 | Copyright 2006 by Sean Luke |
---|
3 | Licensed under the Academic Free License version 3.0 |
---|
4 | See the file "LICENSE" for more information |
---|
5 | */ |
---|
6 | |
---|
7 | |
---|
8 | package ec.gp; |
---|
9 | import ec.*; |
---|
10 | import ec.util.*; |
---|
11 | import java.io.*; |
---|
12 | |
---|
13 | /* |
---|
14 | * GPIndividual.java |
---|
15 | * |
---|
16 | * Created: Fri Aug 27 17:07:45 1999 |
---|
17 | * By: Sean Luke |
---|
18 | */ |
---|
19 | |
---|
20 | /** |
---|
21 | * GPIndividual is an Individual used for GP evolution runs. |
---|
22 | * GPIndividuals contain, at the very least, a nonempty array of GPTrees. |
---|
23 | * You can use GPIndividual directly, or subclass it to extend it as |
---|
24 | * you see fit. |
---|
25 | |
---|
26 | * <P>GPIndividuals have two clone methods: clone() and lightClone(). clone() is |
---|
27 | * a deep clone method as usual. lightClone() is a light clone which does not copy |
---|
28 | * the trees. |
---|
29 | * |
---|
30 | * <p>In addition to serialization for checkpointing, Individuals may read and write themselves to streams in three ways. |
---|
31 | * |
---|
32 | * <ul> |
---|
33 | * <li><b>writeIndividual(...,DataOutput)/readIndividual(...,DataInput)</b> This method |
---|
34 | * transmits or receives an individual in binary. It is the most efficient approach to sending |
---|
35 | * individuals over networks, etc. These methods write the evaluated flag and the fitness, then |
---|
36 | * call <b>readGenotype/writeGenotype</b>, which you must implement to write those parts of your |
---|
37 | * Individual special to your functions-- the default versions of readGenotype/writeGenotype throw errors. |
---|
38 | * You don't need to implement them if you don't plan on using read/writeIndividual. |
---|
39 | * |
---|
40 | * <li><b>printIndividual(...,PrintWriter)/readIndividual(...,LineNumberReader)</b> This |
---|
41 | * approach transmits or receives an indivdual in text encoded such that the individual is largely readable |
---|
42 | * by humans but can be read back in 100% by ECJ as well. Because GPIndividuals are often very large, |
---|
43 | * <b>GPIndividual has overridden these methods -- they work differently than in Individual (the superclass).</b> In specific: |
---|
44 | * <b>readIndividual</b> by default reads in the fitness and the evaluation flag, then calls <b>parseGenotype</b> |
---|
45 | * to read in the trees (via GPTree.readTree(...)). |
---|
46 | * However <b>printIndividual</b> by default prints the fitness and evaluation flag, and prints all the trees |
---|
47 | * by calling GPTree.printTree(...). It does not call <b>genotypeToString</b> at all. This |
---|
48 | * is because it's very wasteful to build up a large string holding the printed form of the GPIndividual |
---|
49 | * just to pump it out a stream once. |
---|
50 | * |
---|
51 | * <li><b>printIndividualForHumans(...,PrintWriter)</b> This |
---|
52 | * approach prints an individual in a fashion intended for human consumption only. Because GPIndividuals are often very large, |
---|
53 | * <b>GPIndividual has overridden this methods -- it works differently than in Individual (the superclass).</b> In specific: |
---|
54 | * <b>printIndividual</b> by default prints the fitness and evaluation flag, and prints all the trees |
---|
55 | * by calling GPTree.printTreeForHumans(...). It does not call <b>genotypeToStringForHumans</b> at all. This |
---|
56 | * is because it's very wasteful to build up a large string holding the printed form of the GPIndividual |
---|
57 | * just to pump it out a stream once. |
---|
58 | * |
---|
59 | * <p>In general, the various readers and writers do three things: they tell the Fitness to read/write itself, |
---|
60 | * they read/write the evaluated flag, and they read/write the GPTree array (by having each GPTree read/write |
---|
61 | * itself). If you add instance variables to GPIndividual, you'll need to read/write those variables as well. |
---|
62 | |
---|
63 | |
---|
64 | <p><b>Parameters</b><br> |
---|
65 | <table> |
---|
66 | <tr><td valign=top><i>base</i>.<tt>numtrees</tt><br> |
---|
67 | <font size=-1>int >= 1</font></td> |
---|
68 | <td valign=top>(number of trees in the GPIndividual)</td></tr> |
---|
69 | |
---|
70 | <tr><td valign=top><i>base</i>.<tt>tree.</tt><i>n</i><br> |
---|
71 | <font size=-1>classname, inherits or = ec.gp.GPTree</font></td> |
---|
72 | <td valign=top>(class of tree <i>n</i> in the individual)</td></tr> |
---|
73 | </table> |
---|
74 | |
---|
75 | <p><b>Default Base</b><br> |
---|
76 | gp.individual |
---|
77 | |
---|
78 | <p><b>Parameter bases</b><br> |
---|
79 | <table> |
---|
80 | <tr><td valign=top><i>base</i>.<tt>tree.</tt><i>n</i></td> |
---|
81 | <td>tree <i>n</i> in the individual</td></tr> |
---|
82 | </table> |
---|
83 | |
---|
84 | * |
---|
85 | * @author Sean Luke |
---|
86 | * @version 1.0 |
---|
87 | */ |
---|
88 | |
---|
89 | public class GPIndividual extends Individual |
---|
90 | { |
---|
91 | public static final String P_NUMTREES = "numtrees"; |
---|
92 | public static final String P_TREE = "tree"; |
---|
93 | |
---|
94 | public GPTree[] trees; |
---|
95 | |
---|
96 | public Parameter defaultBase() |
---|
97 | { |
---|
98 | return GPDefaults.base().push(P_INDIVIDUAL); |
---|
99 | } |
---|
100 | |
---|
101 | public boolean equals(Object ind) |
---|
102 | { |
---|
103 | if (!(this.getClass().equals(ind.getClass()))) return false; // GPIndividuals are special. |
---|
104 | GPIndividual i = (GPIndividual)ind; |
---|
105 | if (trees.length != i.trees.length) return false; |
---|
106 | // this default version works fine for most GPIndividuals. |
---|
107 | for(int x=0;x<trees.length;x++) |
---|
108 | if (!(trees[x].treeEquals(i.trees[x]))) return false; |
---|
109 | return true; |
---|
110 | } |
---|
111 | |
---|
112 | public int hashCode() |
---|
113 | { |
---|
114 | // stolen from GPNode. It's a decent algorithm. |
---|
115 | int hash = this.getClass().hashCode(); |
---|
116 | |
---|
117 | for(int x=0;x<trees.length;x++) |
---|
118 | hash = |
---|
119 | // Rotate hash and XOR |
---|
120 | (hash << 1 | hash >>> 31 ) ^ |
---|
121 | trees[x].treeHashCode(); |
---|
122 | return hash; |
---|
123 | } |
---|
124 | |
---|
125 | /** Sets up a prototypical GPIndividual with those features which it |
---|
126 | shares with other GPIndividuals in its species, and nothing more. */ |
---|
127 | |
---|
128 | public void setup(final EvolutionState state, final Parameter base) |
---|
129 | { |
---|
130 | super.setup(state,base); // actually unnecessary (Individual.setup() is empty) |
---|
131 | |
---|
132 | Parameter def = defaultBase(); |
---|
133 | |
---|
134 | // set my evaluation to false |
---|
135 | evaluated = false; |
---|
136 | |
---|
137 | // how many trees? |
---|
138 | int t = state.parameters.getInt(base.push(P_NUMTREES),def.push(P_NUMTREES),1); // at least 1 tree for GP! |
---|
139 | if (t <= 0) |
---|
140 | state.output.fatal("A GPIndividual must have at least one tree.", |
---|
141 | base.push(P_NUMTREES),def.push(P_NUMTREES)); |
---|
142 | |
---|
143 | // load the trees |
---|
144 | trees = new GPTree[t]; |
---|
145 | |
---|
146 | for (int x=0;x<t;x++) |
---|
147 | { |
---|
148 | Parameter p = base.push(P_TREE).push(""+x); |
---|
149 | trees[x] = (GPTree)(state.parameters.getInstanceForParameterEq( |
---|
150 | p,def.push(P_TREE).push(""+x),GPTree.class)); |
---|
151 | trees[x].owner = this; |
---|
152 | trees[x].setup(state,p); |
---|
153 | } |
---|
154 | |
---|
155 | // now that our function sets are all associated with trees, |
---|
156 | // give the nodes a chance to determine whether or not this is |
---|
157 | // going to work for them (especially the ADFs). |
---|
158 | GPInitializer initializer = ((GPInitializer)state.initializer); |
---|
159 | for (int x=0;x<t;x++) |
---|
160 | { |
---|
161 | for(int w = 0;w < trees[x].constraints(initializer).functionset.nodes.length;w++) |
---|
162 | { |
---|
163 | GPNode[] gpfi = trees[x].constraints(initializer).functionset.nodes[w]; |
---|
164 | for (int y = 0;y<gpfi.length;y++) |
---|
165 | gpfi[y].checkConstraints(state,x,this,base); |
---|
166 | } |
---|
167 | } |
---|
168 | // because I promised with checkConstraints(...) |
---|
169 | state.output.exitIfErrors(); |
---|
170 | } |
---|
171 | |
---|
172 | |
---|
173 | /** Verification of validity of the GPIndividual -- strictly for debugging purposes only */ |
---|
174 | public final void verify(EvolutionState state) |
---|
175 | { |
---|
176 | if (!(state.initializer instanceof GPInitializer)) |
---|
177 | { state.output.error("Initializer is not a GPInitializer"); return; } |
---|
178 | |
---|
179 | GPInitializer initializer = (GPInitializer)(state.initializer); |
---|
180 | |
---|
181 | if (trees==null) |
---|
182 | { state.output.error("Null trees in GPIndividual."); return; } |
---|
183 | for(int x=0;x<trees.length;x++) if (trees[x]==null) |
---|
184 | { state.output.error("Null tree (#"+x+") in GPIndividual."); return; } |
---|
185 | for(int x=0;x<trees.length;x++) |
---|
186 | trees[x].verify(state); |
---|
187 | state.output.exitIfErrors(); |
---|
188 | } |
---|
189 | |
---|
190 | /** Prints just the trees of the GPIndividual. Broken out like this to be used by GEIndividual to avoid |
---|
191 | re-printing the fitness and evaluated premables. */ |
---|
192 | public void printTrees(final EvolutionState state, final int log) |
---|
193 | { |
---|
194 | for(int x=0;x<trees.length;x++) |
---|
195 | { |
---|
196 | state.output.println("Tree " + x + ":",log); |
---|
197 | trees[x].printTreeForHumans(state,log); |
---|
198 | } |
---|
199 | } |
---|
200 | |
---|
201 | public void printIndividualForHumans(final EvolutionState state, final int log) |
---|
202 | { |
---|
203 | state.output.println(EVALUATED_PREAMBLE + (evaluated ? "true" : "false"), log); |
---|
204 | fitness.printFitnessForHumans(state,log); |
---|
205 | printTrees(state,log); |
---|
206 | } |
---|
207 | |
---|
208 | public void printIndividual(final EvolutionState state, final int log) |
---|
209 | { |
---|
210 | state.output.println(EVALUATED_PREAMBLE + Code.encode(evaluated), log); |
---|
211 | fitness.printFitness(state,log); |
---|
212 | for(int x=0;x<trees.length;x++) |
---|
213 | { |
---|
214 | state.output.println("Tree " + x + ":",log); |
---|
215 | trees[x].printTree(state,log); |
---|
216 | } |
---|
217 | } |
---|
218 | |
---|
219 | public void printIndividual(final EvolutionState state, |
---|
220 | final PrintWriter writer) |
---|
221 | { |
---|
222 | writer.println(EVALUATED_PREAMBLE + Code.encode(evaluated)); |
---|
223 | fitness.printFitness(state,writer); |
---|
224 | for(int x=0;x<trees.length;x++) |
---|
225 | { |
---|
226 | writer.println("Tree " + x + ":"); |
---|
227 | trees[x].printTree(state,writer); |
---|
228 | } |
---|
229 | } |
---|
230 | |
---|
231 | /** Overridden for the GPIndividual genotype. */ |
---|
232 | public void writeGenotype(final EvolutionState state, |
---|
233 | final DataOutput dataOutput) throws IOException |
---|
234 | { |
---|
235 | dataOutput.writeInt(trees.length); |
---|
236 | for(int x=0;x<trees.length;x++) |
---|
237 | trees[x].writeTree(state,dataOutput); |
---|
238 | } |
---|
239 | |
---|
240 | /** Overridden for the GPIndividual genotype. */ |
---|
241 | public void readGenotype(final EvolutionState state, |
---|
242 | final DataInput dataInput) throws IOException |
---|
243 | { |
---|
244 | int treelength = dataInput.readInt(); |
---|
245 | if (trees == null || treelength != trees.length) // wrong size! |
---|
246 | state.output.fatal("Number of trees differ in GPIndividual when reading from readGenotype(EvolutionState, DataInput)."); |
---|
247 | for(int x=0;x<trees.length;x++) |
---|
248 | trees[x].readTree(state,dataInput); |
---|
249 | } |
---|
250 | |
---|
251 | public void parseGenotype(final EvolutionState state, |
---|
252 | final LineNumberReader reader) throws IOException |
---|
253 | { |
---|
254 | // Read my trees |
---|
255 | for(int x=0;x<trees.length;x++) |
---|
256 | { |
---|
257 | reader.readLine(); // throw it away -- it's the tree indicator |
---|
258 | trees[x].readTree(state,reader); |
---|
259 | } |
---|
260 | } |
---|
261 | |
---|
262 | /** Deep-clones the GPIndividual. Note that you should not deep-clone the prototypical GPIndividual |
---|
263 | stored in GPSpecies: they contain blank GPTrees with null roots, and this method, |
---|
264 | which calls GPTree.clone(), will produce a NullPointerException as a result. Instead, you probably |
---|
265 | want to use GPSpecies.newIndividual(...) if you're thinking of playing with the prototypical |
---|
266 | GPIndividual. */ |
---|
267 | |
---|
268 | public Object clone() |
---|
269 | { |
---|
270 | // a deep clone |
---|
271 | |
---|
272 | GPIndividual myobj = (GPIndividual)(super.clone()); |
---|
273 | |
---|
274 | // copy the tree array |
---|
275 | myobj.trees = new GPTree[trees.length]; |
---|
276 | for(int x=0;x<trees.length;x++) |
---|
277 | { |
---|
278 | myobj.trees[x] = (GPTree)(trees[x].clone()); // force a deep clone |
---|
279 | myobj.trees[x].owner = myobj; // reset owner away from me |
---|
280 | } |
---|
281 | return myobj; |
---|
282 | } |
---|
283 | |
---|
284 | /** Like clone(), but doesn't force the GPTrees to deep-clone themselves. */ |
---|
285 | public GPIndividual lightClone() |
---|
286 | { |
---|
287 | // a light clone |
---|
288 | GPIndividual myobj = (GPIndividual)(super.clone()); |
---|
289 | |
---|
290 | // copy the tree array |
---|
291 | myobj.trees = new GPTree[trees.length]; |
---|
292 | for(int x=0;x<trees.length;x++) |
---|
293 | { |
---|
294 | myobj.trees[x] = (GPTree)(trees[x].lightClone()); // note light-cloned! |
---|
295 | myobj.trees[x].owner = myobj; // reset owner away from me |
---|
296 | } |
---|
297 | return myobj; |
---|
298 | } |
---|
299 | |
---|
300 | /** Returns the "size" of the individual, namely, the number of nodes |
---|
301 | in all of its subtrees. */ |
---|
302 | public long size() |
---|
303 | { |
---|
304 | long size = 0; |
---|
305 | for(int x=0;x<trees.length;x++) |
---|
306 | size += trees[x].child.numNodes(GPNode.NODESEARCH_ALL); |
---|
307 | return size; |
---|
308 | } |
---|
309 | |
---|
310 | } |
---|