Free cookie consent management tool by TermsFeed Policy Generator

source: branches/OKBJavaConnector/ECJClient/src/ec/app/twobox/TwoBox.java @ 9449

Last change on this file since 9449 was 6152, checked in by bfarka, 14 years ago

added ecj and custom statistics to communicate with the okb services #1441

File size: 5.9 KB
Line 
1/*
2  Copyright 2006 by Sean Luke
3  Licensed under the Academic Free License version 3.0
4  See the file "LICENSE" for more information
5*/
6
7
8package ec.app.twobox;
9import ec.util.*;
10import ec.*;
11import ec.gp.*;
12import ec.gp.koza.*;
13import ec.simple.*;
14
15/*
16 * TwoBox.java
17 *
18 * Created: Mon Nov  1 15:46:19 1999
19 * By: Sean Luke
20 */
21
22/**
23 * TwoBox implements the TwoBox problem, with or without ADFs,
24 * as discussed in Koza-II.
25 *
26 <p><b>Parameters</b><br>
27 <table>
28 <tr><td valign=top><i>base</i>.<tt>data</tt><br>
29 <font size=-1>classname, inherits or == ec.app.twobox.TwoBoxData</font></td>
30 <td valign=top>(the class for the prototypical GPData object for the TwoBox problem)</td></tr>
31 <tr><td valign=top><i>base</i>.<tt>size</tt><br>
32 <font size=-1>int >= 1</font></td>
33 <td valign=top>(the size of the training set)</td></tr>
34 <tr><td valign=top><i>base</i>.<tt>range</tt><br>
35 <font size=-1>int >= 1</font></td>
36 <td valign=top>(the range of dimensional values in the training set -- they'll be integers 1...range inclusive)</td></tr>
37 </table>
38
39 <p><b>Parameter bases</b><br>
40 <table>
41 <tr><td valign=top><i>base</i>.<tt>data</tt></td>
42 <td>species (the GPData object)</td></tr>
43 </table>
44 *
45 * @author Sean Luke
46 * @version 1.0
47 */
48
49public class TwoBox extends GPProblem implements SimpleProblemForm
50    {
51    public static final String P_SIZE = "size";
52    public static final String P_RANGE= "range";
53
54    public int currentIndex;
55    public int trainingSetSize;
56    public int range;
57   
58    // these are read-only during evaluation-time, so
59    // they can be just light-cloned and not deep cloned.
60    // cool, huh?
61   
62    public double inputsl0[];
63    public double inputsw0[];
64    public double inputsh0[];
65    public double inputsl1[];
66    public double inputsw1[];
67    public double inputsh1[];
68    public double outputs[];
69
70    // we'll need to deep clone this one though.
71    public TwoBoxData input;
72
73    public final double func(final double l0, final double w0,
74        final double h0, final double l1,
75        final double w1, final double h1)
76        { return l0*w0*h0-l1*w1*h1; }
77
78    public Object clone()
79        {
80        // don't bother copying the inputs and outputs; they're read-only :-)
81        // don't bother copying the currentIndex; it's transitory
82        // but we need to copy our twobox data
83        TwoBox myobj = (TwoBox) (super.clone());
84
85        myobj.input = (TwoBoxData)(input.clone());
86        return myobj;
87        }
88
89    public void setup(final EvolutionState state,
90        final Parameter base)
91        {
92        // very important, remember this
93        super.setup(state,base);
94
95        trainingSetSize = state.parameters.getInt(base.push(P_SIZE),null,1);
96        if (trainingSetSize<1) state.output.fatal("Training Set Size must be an integer greater than 0");
97
98        range = state.parameters.getInt(base.push(P_RANGE),null,1);
99        if (trainingSetSize<1) state.output.fatal("Range must be an integer greater than 0");
100
101        // Compute our inputs so they
102        // can be copied with clone later
103       
104        inputsl0 = new double[trainingSetSize];
105        inputsw0 = new double[trainingSetSize];
106        inputsh0 = new double[trainingSetSize];
107        inputsl1 = new double[trainingSetSize];
108        inputsw1 = new double[trainingSetSize];
109        inputsh1 = new double[trainingSetSize];
110        outputs = new double[trainingSetSize];
111       
112        for(int x=0;x<trainingSetSize;x++)
113            {
114            inputsl0[x] = state.random[0].nextInt(range)+1;
115            inputsw0[x] = state.random[0].nextInt(range)+1;
116            inputsh0[x] = state.random[0].nextInt(range)+1;
117            inputsl1[x] = state.random[0].nextInt(range)+1;
118            inputsw1[x] = state.random[0].nextInt(range)+1;
119            inputsh1[x] = state.random[0].nextInt(range)+1;
120            outputs[x] = func(inputsl0[x],inputsw0[x],inputsh0[x],
121                inputsl1[x],inputsw1[x],inputsh1[x]);
122            state.output.println("{" + inputsl0[x]+ "," + inputsw0[x]+ "," +
123                inputsh0[x]+ "," + inputsl1[x]+ "," +
124                inputsw1[x]+ "," + inputsh1[x]+ "," +
125                outputs[x] + "},",0);
126            }
127
128        // set up our input -- don't want to use the default base, it's unsafe
129        input = (TwoBoxData) state.parameters.getInstanceForParameterEq(
130            base.push(P_DATA), null, TwoBoxData.class);
131        input.setup(state,base.push(P_DATA));
132        }
133
134
135    public void evaluate(final EvolutionState state,
136        final Individual ind,
137        final int subpopulation,
138        final int threadnum)
139        {
140        if (!ind.evaluated)  // don't bother reevaluating
141            {
142            int hits = 0;
143            double sum = 0.0;
144            double result;
145            for (int y=0;y<trainingSetSize;y++)
146                {
147                currentIndex = y;
148                ((GPIndividual)ind).trees[0].child.eval(
149                    state,threadnum,input,stack,((GPIndividual)ind),this);
150
151                final double HIT_LEVEL = 0.01;
152                final double PROBABLY_ZERO = 1.11E-15;
153                final double BIG_NUMBER = 1.0e15;  // the same as lilgp uses
154                   
155                result = Math.abs(outputs[y] - input.x);
156
157                // very slight math errors can creep in when evaluating
158                // two equivalent by differently-ordered functions, like
159                // x * (x*x*x + x*x)  vs. x*x*x*x + x*x
160
161                if (result<PROBABLY_ZERO)  // slightly off
162                    result = 0.0;
163
164                if (result > BIG_NUMBER)
165                    result = BIG_NUMBER;                   
166
167                if (result <= HIT_LEVEL) hits++;  // whatever!
168
169                sum += result;              }
170               
171            // the fitness better be KozaFitness!
172            KozaFitness f = ((KozaFitness)ind.fitness);
173            f.setStandardizedFitness(state,(float)sum);
174            f.hits = hits;
175            ind.evaluated = true;
176            }
177        }
178    }
Note: See TracBrowser for help on using the repository browser.