1 | /*
|
---|
2 | Copyright 2006 by Sean Luke
|
---|
3 | Licensed under the Academic Free License version 3.0
|
---|
4 | See the file "LICENSE" for more information
|
---|
5 | */
|
---|
6 |
|
---|
7 |
|
---|
8 | package ec.app.regression;
|
---|
9 | import ec.util.*;
|
---|
10 | import ec.*;
|
---|
11 | import ec.gp.*;
|
---|
12 | import ec.gp.koza.*;
|
---|
13 | import ec.simple.*;
|
---|
14 |
|
---|
15 | /*
|
---|
16 | * Regression.java
|
---|
17 | *
|
---|
18 | * Created: Mon Nov 1 15:46:19 1999
|
---|
19 | * By: Sean Luke
|
---|
20 | */
|
---|
21 |
|
---|
22 | /**
|
---|
23 | * Regression implements the Koza (quartic) Symbolic Regression problem.
|
---|
24 | *
|
---|
25 | * <p>The equation to be regressed is y = x^4 + x^3 + x^2 + x, {x in [-1,1]}
|
---|
26 | * <p>This equation was introduced in J. R. Koza, GP II, 1994.
|
---|
27 | *
|
---|
28 | <p><b>Parameters</b><br>
|
---|
29 | <table>
|
---|
30 | <tr><td valign=top><i>base</i>.<tt>data</tt><br>
|
---|
31 | <font size=-1>classname, inherits or == ec.app.regression.RegressionData</font></td>
|
---|
32 | <td valign=top>(the class for the prototypical GPData object for the Regression problem)</td></tr>
|
---|
33 | <tr><td valign=top><i>base</i>.<tt>size</tt><br>
|
---|
34 | <font size=-1>int >= 1</font></td>
|
---|
35 | <td valign=top>(the size of the training set)</td></tr>
|
---|
36 | </table>
|
---|
37 |
|
---|
38 | <p><b>Parameter bases</b><br>
|
---|
39 | <table>
|
---|
40 | <tr><td valign=top><i>base</i>.<tt>data</tt></td>
|
---|
41 | <td>species (the GPData object)</td></tr>
|
---|
42 | </table>
|
---|
43 | *
|
---|
44 | * @author Sean Luke
|
---|
45 | * @version 1.0
|
---|
46 | */
|
---|
47 |
|
---|
48 | public class Regression extends GPProblem implements SimpleProblemForm
|
---|
49 | {
|
---|
50 | public static final String P_SIZE = "size";
|
---|
51 |
|
---|
52 | public double currentValue;
|
---|
53 | public int trainingSetSize;
|
---|
54 |
|
---|
55 | // these are read-only during evaluation-time, so
|
---|
56 | // they can be just light-cloned and not deep cloned.
|
---|
57 | // cool, huh?
|
---|
58 |
|
---|
59 | public double inputs[];
|
---|
60 | public double outputs[];
|
---|
61 |
|
---|
62 | // we'll need to deep clone this one though.
|
---|
63 | public RegressionData input;
|
---|
64 |
|
---|
65 | public double func(double x)
|
---|
66 | { return x*x*x*x + x*x*x + x*x + x; }
|
---|
67 |
|
---|
68 | public Object clone()
|
---|
69 | {
|
---|
70 | // don't bother copying the inputs and outputs; they're read-only :-)
|
---|
71 | // don't bother copying the currentValue; it's transitory
|
---|
72 | // but we need to copy our regression data
|
---|
73 | Regression myobj = (Regression) (super.clone());
|
---|
74 |
|
---|
75 | myobj.input = (RegressionData)(input.clone());
|
---|
76 | return myobj;
|
---|
77 | }
|
---|
78 |
|
---|
79 | public void setup(final EvolutionState state,
|
---|
80 | final Parameter base)
|
---|
81 | {
|
---|
82 | // very important, remember this
|
---|
83 | super.setup(state,base);
|
---|
84 |
|
---|
85 | trainingSetSize = state.parameters.getInt(base.push(P_SIZE),null,1);
|
---|
86 | if (trainingSetSize<1) state.output.fatal("Training Set Size must be an integer greater than 0", base.push(P_SIZE));
|
---|
87 |
|
---|
88 | // Compute our inputs so they can be copied with clone later
|
---|
89 |
|
---|
90 | inputs = new double[trainingSetSize];
|
---|
91 | outputs = new double[trainingSetSize];
|
---|
92 |
|
---|
93 | for(int x=0;x<trainingSetSize;x++)
|
---|
94 | {
|
---|
95 | inputs[x] = state.random[0].nextDouble() * 2.0 - 1.0;
|
---|
96 | outputs[x] = func(inputs[x]);
|
---|
97 | state.output.message("{" + inputs[x] + "," + outputs[x] + "},");
|
---|
98 | }
|
---|
99 |
|
---|
100 | // set up our input -- don't want to use the default base, it's unsafe
|
---|
101 | input = (RegressionData) state.parameters.getInstanceForParameterEq(
|
---|
102 | base.push(P_DATA), null, RegressionData.class);
|
---|
103 | input.setup(state,base.push(P_DATA));
|
---|
104 | }
|
---|
105 |
|
---|
106 |
|
---|
107 | public void evaluate(final EvolutionState state,
|
---|
108 | final Individual ind,
|
---|
109 | final int subpopulation,
|
---|
110 | final int threadnum)
|
---|
111 | {
|
---|
112 | if (!ind.evaluated) // don't bother reevaluating
|
---|
113 | {
|
---|
114 | int hits = 0;
|
---|
115 | double sum = 0.0;
|
---|
116 | double result;
|
---|
117 | for (int y=0;y<trainingSetSize;y++)
|
---|
118 | {
|
---|
119 | currentValue = inputs[y];
|
---|
120 | ((GPIndividual)ind).trees[0].child.eval(
|
---|
121 | state,threadnum,input,stack,((GPIndividual)ind),this);
|
---|
122 |
|
---|
123 | // It's possible to get NaN because cos(infinity) and
|
---|
124 | // sin(infinity) are undefined (hence cos(exp(3000)) zings ya!)
|
---|
125 | // So since NaN is NOT =,<,>,etc. any other number, including
|
---|
126 | // NaN, we're CAREFULLY wording our cutoff to include NaN.
|
---|
127 | // Interesting that this has never been reported before to
|
---|
128 | // my knowledge.
|
---|
129 |
|
---|
130 | final double HIT_LEVEL = 0.01;
|
---|
131 | final double PROBABLY_ZERO = 1.11E-15;
|
---|
132 | final double BIG_NUMBER = 1.0e15; // the same as lilgp uses
|
---|
133 |
|
---|
134 | result = Math.abs(outputs[y] - input.x);
|
---|
135 |
|
---|
136 | if (! (result < BIG_NUMBER ) ) // *NOT* (input.x >= BIG_NUMBER)
|
---|
137 | result = BIG_NUMBER;
|
---|
138 |
|
---|
139 | // very slight math errors can creep in when evaluating
|
---|
140 | // two equivalent by differently-ordered functions, like
|
---|
141 | // x * (x*x*x + x*x) vs. x*x*x*x + x*x
|
---|
142 |
|
---|
143 | else if (result<PROBABLY_ZERO) // slightly off
|
---|
144 | result = 0.0;
|
---|
145 |
|
---|
146 | if (result <= HIT_LEVEL) hits++; // whatever!
|
---|
147 |
|
---|
148 | sum += result; }
|
---|
149 |
|
---|
150 | // the fitness better be KozaFitness!
|
---|
151 | KozaFitness f = ((KozaFitness)ind.fitness);
|
---|
152 | f.setStandardizedFitness(state,(float)sum);
|
---|
153 | f.hits = hits;
|
---|
154 | ind.evaluated = true;
|
---|
155 | }
|
---|
156 | }
|
---|
157 | }
|
---|